RAS Nano & ITМикроэлектроника Russian Microelectronics

  • ISSN (Print) 0544-1269
  • ISSN (Online) 3034-5480

Training of a Spiking Neural Network with Consideration of Memristive Crossbar Array Characteristics

PII
S30345480S0544126925040058-1
DOI
10.7868/S3034548025040058
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 54 / Issue number 4
Pages
310-322
Abstract
A model, methodology and software tools for simulating a spiking neural network in the training mode considering the features of the operation of memristive crossbar arrays were developed. The impact of voltage drops on interconnects, the discrete step of adjusting the conductivity levels of memristive elements and the nonlinearity of their volt-ampere characteristics on the effectiveness of implementing spiking neural network training algorithms was studied. Results of testing the spiking neural network in the training mode and inference mode in the task of image recognition using the developed simulation method, taking into account the characteristics of experimentally fabricated memristive structures, are presented.
Keywords
импульсные нейронные сети аппаратное исполнение мемристивный кроссбар-массив
Date of publication
20.05.2025
Year of publication
2025
Number of purchasers
0
Views
73

References

  1. 1. Mutlu O., Ghose S., Gómez-Luna J., Ausavarungnirun R. Processing data where it makes sense: Enabling in-memory computation // Microprocessors and Microsystems. 2019. V. 67. P. 28–41.
  2. 2. Rojas R. The Backpropagation Algorithm // Neural Networks. Springer, Berlin, Heidelberg. 1996. P. 149–182.
  3. 3. Caporale N., Dan Y. Spike timing–dependent plasticity: a Hebbian learning rule // Annual Review of Neuroscience. 2008. V. 31. N. 1. P. 25–46.
  4. 4. Li X., Tang J., Zhang Q., Gao B., Yang J.J., Song S., Wu W., Zhang W., Yao P., Deng N. et al. Power-efficient neural network with artificial dendrites // Nature Nanotechnology. 2020. V. 15. N. 9. P. 776–782.
  5. 5. Li Y., Su K., Chen H., Zou X., Wang C., Man H., Liu K., Xi X., Li T. Research progress of neural synapses based on memristors // Electronics. 2023. V. 12. N. 15. 3298.
  6. 6. Surazhevsky I.A., Demin V.A., Ilyasov A.I., Emelyanov A.V., Nikiruy K.E., Rylkov V.V., Shchanikov S.A., Bordanov I.A., Gerasimova S.A., Guseinov D.V. et al. Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network // Chaos, Solitons & Fractals. 2021. V. 146. 110890.
  7. 7. Huang J., Serb A., Stathopoulos S., Prodromakis T. In-memory computing for binary deep neural networks with monolithically integrated RRAM and 90-nm CMOS // IEEE Transactions on Electron Devices. 2020. V. 67. N. 10. P. 4185–4192.
  8. 8. Guo Y., Wu H., Gao B., Qian H. Unsupervised learning on resistive memory array based spiking neural networks // Frontiers in neuroscience. 2019. V. 13. 812.
  9. 9. Prezioso M., Mahmoodi M.R., Bayat F.M., Nili H., Kim H., Vincent A., Strukov D.B. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits // Nature communications. 2018. V. 9. N. 1. 5311.
  10. 10. Milo V., Pedretti G., Carboni R., Calderoni A., Ramaswamy N., Ambrogio S., Ielmini D. Demonstration of hybrid CMOS/RRAM neural networks with spike time/rate-dependent plasticity // 2016 IEEE International Electron Devices Meeting (IEDM). 2016. P. 16.8.1–16.8.4.
  11. 11. Kim H., Mahmoodi M., Nili H., Strukov D.B. 4K-memristor analog-grade passive crossbar circuit // Nature communications. 2021. V. 12. N. 1. 5198.
  12. 12. Andreeva N., Ivanov A., Petrov A. Multilevel resistive switching in TiO2/Al2O3 bilayers at low temperature // AIP Advances. 2018. V. 8. N. 2. 025208.
  13. 13. Rao M., Tang H., Wu J., Song W., Zhang M., Yin W., Zhuo Y., Kiani F., Chen B., Jiang X. et al. Thousands of conductance levels in memristors integrated on CMOS // Nature. 2023. V. 615. N. 7954. P. 823–829.
  14. 14. Cai F., Correll J.M., Lee S.H., Lim Y., Bothra V., Zhang Z., Flynn M.P., Lu W.D. A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations // Nature electronics. 2019. V. 2. N. 7. P. 290–299.
  15. 15. Yao P., Wu H., Gao B., Tang J., Zhang Q., Zhang W., Yang J.J., Qian H. Fully hardware-implemented memristor convolutional neural network // Nature. 2020. V. 577. N. 7792. P. 641–646.
  16. 16. Kiani F., Yin J., Wang Z., Yang J.J., Xia Q. A fully hardware-based memristive multilayer neural network // Science advances. 2021. V. 7. N. 48. eabj4801.
  17. 17. Yin S., Sun X., Yu S., Seo J.S. High-throughput in-memory computing for binary deep neural networks with monolithically integrated RRAM and 90-nm CMOS // IEEE Transactions on Electron Devices. 2020. V. 67. N. 10. P. 4185–4192.
  18. 18. Li C., Ignowski J., Sheng X., Wessel R., Jaffe B., Ingemi J., Graves C., Strachan J.P. CMOS-integrated nanoscale memristive crossbars for CNN and optimization acceleration // 2020 IEEE International Memory Workshop (IMW). 2020. P. 1–4.
  19. 19. Pedretti G., Mannocci P., Li C., Sun Z., Strachan J.P., Ielmini D. Redundancy and analog slicing for precise in-memory machine learning—Part I: Programming techniques // IEEE Transactions on Electron Devices. 2021. V. 68. N. 9. P. 4373–4378.
  20. 20. Mochida R., Kouno K., Hayata Y., Nakayama M., Ono T., Suwa H., Yasuhara R., Katayama K., Mikawa T., Gohou Y. A 4M synapses integrated analog ReRAM based 66.5 TOPS/W neural-network processor with cell current controlled writing and flexible network architecture // 2018 IEEE Symposium on VLSI Technology. 2018. P. 175–176.
  21. 21. Su F., Chen W.H., Xia L., Lo C.P., Tang T., Wang Z., Hsu K.H., Cheng M., Li J.Y., Xie Y. et al. A 462GOPs/J RRAM-based nonvolatile intelligent processor for energy harvesting IoE system featuring nonvolatile logics and processing-in-memory // 2017 Symposium on VLSI Technology. 2017. P. T260–T261.
  22. 22. Ambrogio S., Narayanan P., Tsai H., Shelby R.M., Boybat I., Di Nolfo C., Sidler S., Giordano M., Bodini M., Farinha N.C.P. et al. Equivalent-accuracy accelerated neural-network training using analogue memory // Nature. 2018. V. 558. N. 7708. P. 60–67.
  23. 23. Deng L. The MNIST database of handwritten digit images for machine learning research [best of the web] // IEEE signal processing magazine. 2012. V. 29. N. 6. P. 141–142.
  24. 24. Dudkin A.P., Ryndin E.A., Andreeva N.V. Modeling the functional features of a memristive crossbar array in neuromorphic electronic modules // Russian Microelectronics. 2024. V. 53. N. 6. P. 554–566.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library