RAS Nano & ITМикроэлектроника Russian Microelectronics

  • ISSN (Print) 0544-1269
  • ISSN (Online) 3034-5480

STRUCTURE OF THIN TITANIUM NITRIDE FILMS DEPOSITED BY MAGNETRON SPUTTERING

PII
S0544126925030029-1
DOI
10.31857/S0544126925030029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 54 / Issue number 3
Pages
202-212
Abstract
This review paper is focused on the structure of thin titanium nitride films formed by magnetron sputtering. A model of film growth depending on the deposition temperature and nitrogen flow is considered. This model is compared with experimental results. The effect of annealing on the structure of titanium nitride films is described.
Keywords
нитрид титана магнетронное распыление кристаллическая структура
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Sharath S.U., Vogel S., Molina-Luna L. Control of Switching Modes and Conductance Quantization in Oxygen Engineered HfOx based Memristive Devices // Adv. Funct. Mater. 2017. Vol. 27. № 32. P. 1700432.
  2. 2. Isaev A.G., Permyakova O. О., Rogozhin A.Е. Mechanisms of conductive filament formation in hafnium oxide multilayer structures // Thin Solid Films. 2023. Vol. 781. P. 139993.
  3. 3. Isaev A.G., Permyakova O.O., Rogozhin A.E. Oxide Memristors for ReRAM: Approaches, Characteristics, and Structures // Russ. Microelectron. 2023. Vol. 52. № 2. P. 74–98.
  4. 4. Kohlhase A., Mändl M., Pamler W. Performance and failure mechanisms of TiN diffusion barrier layers in submicron devices // J. Appl. Phys. 1989. Vol. 65, № 6. P. 2464–2469.
  5. 5. Kwak M.Y., Shin D.H., Kang T.W., Kim K.N. Characteristics of TiN barrier layer against Cu diffusion // Thin Solid Films. 1999. Vol. 339. № 1–2. P. 290–293.
  6. 6. Vorobjova A.I., Labunov V.A., Outkina E.A., Grapov D.V. Metallization of Vias in Silicon Wafers to Produce Three-Dimensional Microstructures // Russ. Microelectron. 2021. Vol. 50. № 1. P. 8–18.
  7. 7. Huang J.S., Oates A.S., Zhao J. Effect of cracks in TiN anti-reflection coating layers on early via electromigration failure // Thin Solid Films. 2000. Vol. 371. № 1–2. P. 310–315.
  8. 8. Pan F., Gao S., Chen C. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance // Mater. Sci. Eng. R Rep. 2014. Vol. 83. P. 1–59.
  9. 9. Lanza M., Wong H.-S.P., Pop E. Recommended Methods to Study Resistive Switching Devices // Adv. Electron. Mater. 2019. Vol. 5. № 1. P. 1800143.
  10. 10. Kajikawa Y., Noda S., Komiyama H. Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides // J. Vac. Sci. Technol. Vac. Surf. Films. 2003. Vol. 21. № 6. P. 1943–1954.
  11. 11. Patsalas P., Kalfagiannis N., Kassavetis S., Abadias G., Bellas D.V., Lekka Ch., Lidorikis E. Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics // Mater. Sci. Eng. R Rep. 2018. Vol. 123. P. 1–55.
  12. 12. Petrov I., Barna P.B., Hultman L., Greene J.E. Microstructural evolution during film growth // J. Vac. Sci. Technol. Vac. Surf. Films. 2003. Vol. 21. № 5. P. S117–S128.
  13. 13. Mahieu S., Depla D., Gryse R.D. Modelling the growth of transition metal nitrides // J. Phys. Conf. Ser. 2008. Vol. 100. № 8. P. 082003.
  14. 14. Mahieu S., Depla D. Reactive sputter deposition of TiN layers: modelling the growth by characterization of particle fluxes towards the substrate // J. Phys. Appl. Phys. 2009. Vol. 42. № 5. P. 053002.
  15. 15. Mahieu S., Ghekiere P., Depla D., De Gryse R. Biaxial alignment in sputter deposited thin films // Thin Solid Films. 2006. Vol. 515. № 4. P. 1229–1249.
  16. 16. Matacotta F.C., Ottaviani G. Science and technology of thin films. Singapore New Jersey London [etc.]: World scientific, 1995.
  17. 17. Thornton J.A. High Rate Thick Film Growth // Annu. Rev. Mater. Sci. 1977. Vol. 7. № 1. P. 239–260.
  18. 18. Li T.Q., Noda S., Tsuji Y., Ohsawa T., Komiyama H. Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111) // J. Vac. Sci. Technol. Vac. Surf. Films. 2002. Vol. 20. № 3. P. 583–588.
  19. 19. Martinez G., Shutthanandan V., Thevuthasan S., Chessa J.F., Ramana C.V. Effect of thickness on the structure, composition and properties of titanium nitride nano-coatings // Ceram. Int. 2014. Vol. 40. № 4. P. 5757–5764.
  20. 20. Yang H.H., Je J.H., Lee K.-B. Effect of the nitrogen partial pressure on the preferred orientation of TiN thin films // J. Mater. Sci. Lett. 1995. Vol. 14. № 23. P. 1635–1637.
  21. 21. Je J.H., Noh D.Y., Kim H.K., Liang K.S. The crossover of preferred orientation in TiN film growth: A real time x-ray scattering study // J. Mater. Res. 1997. Vol. 12. № 1. P. 9–12.
  22. 22. Zhou T., Liu D., Zhang Y., Ouyang T., Suo J. Microstructure and hydrogen impermeability of titanium nitride thin films deposited by direct current reactive magnetron sputtering // J. Alloys Compd. 2016. Vol. 688. P. 44–50.
  23. 23. Chuang K.-L., Tsai M.-T., Lu F.-H. Morphology control of conductive TiN films produced by air-based magnetron sputtering // Surf. Coat. Technol. 2018. Vol. 350. P. 1091–1097.
  24. 24. Huang J.-H., Yu K.-J., Sit P., Yu G.-P. Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering // Surf. Coat. Technol. 2006. Vol. 200. № 14–15. P. 4291–4299.
  25. 25. Xi Y., Fan H., Liu W. The effect of annealing treatment on microstructure and properties of TiN films prepared by unbalanced magnetron sputtering // J. Alloys Compd. 2010. Vol. 496. № 1–2. P. 695–698.
  26. 26. Kavitha A., Kannan R., Sreedhara Reddy P., Rajashabala S. The effect of annealing on the structural, optical and electrical properties of Titanium Nitride (TiN) thin films prepared by DC magnetron sputtering with supported discharge // J. Mater. Sci. Mater. Electron. 2016. Vol. 27. № 10. P. 10427–10434.
  27. 27. Ghailane A. et al. Influence of Annealing Temperature on the Microstructure and Hardness of TiN Coatings Deposited by High-Power Impulse Magnetron Sputtering // J. Mater. Eng. Perform. 2022. Vol. 31. № 7. P. 5593–5601.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library