- Код статьи
- S0544126925020069-1
- DOI
- 10.31857/S0544126925020069
- Тип публикации
- Обзор
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 54 / Номер выпуска 2
- Страницы
- 164-181
- Аннотация
- Приложения, связанные с применением искусственного интеллекта (ИИ) и интернета вещей, требуют высокопроизводительных вычислительных систем. Современные цифровые нейроморфные сопроцессоры, которые изготавливаются по КМОП-технологии, неэффективны при выполнении нейросетевых алгоритмов, из-за ограничений архитектуры фон-Неймана. Перспективное направление для исследований - интегральные схемы на основе энергонезависимых сегнетоэлектрических транзисторов. В работе приведен обзор исследований, посвященных сегнетоэлектрическим материалам, характеристикам сегнетоэлектрических транзисторов и методам их исследования.
- Ключевые слова
- сегнетоэлектрические транзисторы FeFET HZO PZT PVDF
- Дата публикации
- 20.03.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 18
Библиография
- 1. Dong W. et al. Ferroelectric materials for neuroinspired computing applications, Fundamental Research, September 2024, V. 4, Iss. 5, P. 1272-1291.
- 2. Yoon S.-K. et al. Design of DRAM-NAND flash hybrid main memory and Q-learning-based prefetching method, J. Supercomp., 2018, V. 74, P. 5293.
- 3. Liao C.-Y. et al. Multipeak coercive electric-field-based multilevel cell nonvolatile memory with antiferroelectric-ferroelectric Field-Effect Transistors (FETs), IEEE Trans. Ultrason., Ferroelectr., Freq. Control, 2022, V. 69, P. 2214-2221.
- 4. Sugibuchi K., Kurogi Y., Endo N. Ferroelectric field-effect memory device using BiTiO film, J. Appl. Phys., 1975, V. 46, P. 2877-2881.
- 5. Chauhan N. et al. Negative to-Positive Differential Resistance Transition in Ferroelectric FET: Physical Insight and Utilization in Analog Circuits, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 2022, V. 69, P. 430-437.
- 6. Katsouras I. et al. Controlling the on/off current ratio of ferroelectric field- effect transistors, Sci. Rep. 5, 2015, P. 12094.
- 7. Scott J.F. Ferroelectric Memories, Springer, 2000, Vol. 3.
- 8. Орлов О.М., Маркеев А.М., Зенкевич А.В., Черникова А.Г., Спиридонов М.В., Измайлов Р.А., Горнев Е.С. Исследование характеристик и особенностей изготовления элементов энергонезависимой памяти fram, полученных с использованием процессов атомно-слоевого осаждения, Микроэлектроника, 2016, том 45, № 4, с. 280-288.
- 9. Böscke T. et al. Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors, IEEE, 2011, In 2011 Int. Electron Devices Meeting 24.5.1-24.5.4.
- 10. Böscke T. et al. Phase transitions in ferroelectric silicon doped hafnium oxide, Appl. Phys. Lett., 2011, V. 99, P. 112904.
- 11. Keshavarzi A., van den Hoek W. Edge intelligence - on the challenging road to a trillion smart connected iot devices, IEEE Des. Test, 2019, V. 36, P. 41-64.
- 12. Mushkolaj S. The origin of the spontaneous electric polarization, arXiv:0810.4088, 2008, P. 1.
- 13. Said S.M., Sabri M.F.M., Salleh F. Ferroelectrics and Their Applications, Reference Module in Materials Science and Materials Engineering, 2017.
- 14. Bush A. Pyroelectric effect and its applications, Moscow, MIREA, January 2005, P. 18.
- 15. Si M. et al. A ferroelectric semiconductor field-effect transistor, Nat. Electron., 2019, V. 2, P. 580.
- 16. Mulaosmanovic H. et al. Mimicking biological neurons with a nanoscale ferroelectric transistor, Nanoscale, 2018, V. 10, P. 21755-21763.
- 17. Kimand K., Lee S. Integration of lead zirconium titanate thin films for high density ferroelectric random access memory, J. Appl. Phys., 2006, V. 100, 051604.
- 18. Liu X., Liu Y., Chen W., Li J., Liao L. Ferroelectric memory based on nanostructures, Nanoscale Res. Lett., 2012, V. 7, P. 285.
- 19. Yurchuk E. et al. Charge-trapping phenomena in HfO-based FeFET-type nonvolatile memories, IEEE Trans. Electron Devices, 2016, V. 63, P. 3501.
- 20. Shiraneand G., Suzuki K. Crystal structure of Pb(Zr- Ti)O, J. Phys. Soc. Jpn., 1952, V. 7, P. 333.
- 21. Haertling G.H. Ferroelectric ceramics: History and technology, Ferroelectricity, 2007, 818, P. 157.
- 22. Newnham R.E. Molecular mechanisms in smart materials, MRS Bull., 1997, Vol. 22, P. 20.
- 23. Ko C. et al. Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory, Adv. Mater., 2016, V. 28, P. 2923.
- 24. Lee B.W. Synthesis and characterization of compositionally modified PZT by wet chemical preparation from aqueous solution, J. Eur. Ceram. Soc., 2004, V. 24, P. 925.
- 25. Qi H., Xia X., Zhou C., Xiao P., Wang Y., Deng Y. Ferroelectric properties of the flexible Pb(ZrTi)O thin film on mica, J. Mater. Sci. Mater. Electron., 2020, V. 31, P. 3042.
- 26. Schroeder R., Majewski L.A., Grell M. All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator, Adv. Mater., 2004, V. 16, P. 633.
- 27. Li H., Wang R., Han S.T., Zhou Y. Ferroelectric polymers for non-volatile memory devices: A review, Polym. Int., 2020, V. 69, P. 533.
- 28. Furukawa T. Ferroelectric properties of vinylidene fluoride copolymers, Phase Transitions, 1989, V. 18, P. 143.
- 29. Hasegawa R., Takahashi Y., Chatani Y., Tadokoro H. Crystal structures of three crystalline forms of poly(vinylidene fluoride), Polym. J., 1972, V. 3, P. 600.
- 30. García-Gutiérrez M.-C. et al. Understanding crystallization features of P(VDF-TrFE) copolymers under confinement to optimize ferroelectricity in nanostructures, Nanoscale, 2013, V. 5, P. 6006.
- 31. Tsai M.-F. et al. Oxide heteroepitaxy-based flexible ferroelectric transistor, ACS Appl. Mater. Interfaces, 2019, V. 11, P. 25882.
- 32. Fischerand D., Kersch A. The effect of dopants on the dielectric constant of HfO and ZrO from first principles, Appl. Phys. Lett., 2008, V. 92, 012908.
- 33. Lun X. et al. Kinetic pathway of the ferroelectric phase formation in doped HfO films, Journal of applied physics, 2017, № 122, 124104.
- 34. Schroeder U. et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide, Japanese Journal of Applied Physics, 2014, V. 53, 08LE02.
- 35. Böscke T.S., Müller J., Bräuhaus D., Schröder U., Böttger U. Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett., 2011, V. 99, 102903.
- 36. Zarubin S. et al. Fully ALD-grown TiN/HfZrO/ TiN stacks: Ferroelectric and structural properties, Appl. Phys. Lett., 2016, V. 109, 192903.
- 37. Kim S.J. et al. Large ferroelectric polarization of TiN/ HfZrO/TiN capacitors due to stress-induced crystallization at low thermal budget, Appl. Phys. Lett., 2017, V. 111, 242901.
- 38. Kozodaev M.G. et al. La-doped HfZrO thin films for high-efficiency electrostatic supercapacitors, Applied physics letters, 2018, V. 113, 123902.
- 39. Kozodaev M.G. et al. Mitigating wakeup effect and improving endurance of ferroelectric HfO-ZrO thin films by careful La-doping, J. Appl. Phys., 2019, V. 125, 034101.
- 40. Kim H.J. et al. Grain size engineering for ferroelectric HfZrO films by an insertion of AlO interlayer, Appl. Phys. Lett., 2014, V. 105, 192903.
- 41. Zhang S. et al. Low voltage operating 2D MoS ferroelectric memory transistor with HfZrO gate structure, Nanoscale Res. Lett., 2020, V. 15, P. 157.
- 42. Mikolajick T., Slesazeck S., Park M.H., Schroeder U. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric fieldeffect transistors, MRS Bull., 2018, V. 43, P. 340.
- 43. Zhou Y. et al. Out-of-Plane piezoelectricity and ferroelectricity in layered α-InSe nanoflakes, Nano Lett., 2017, V. 17, P. 5508.
- 44. Majdoub M.S., Maranganti R., Sharma P. Understanding the origins of the intrinsic dead-layer effect in nanocapacitors, Physical review B, 2009, V. 79, 115412.
- 45. Фетисенкова K.A., Рогожин A.E. Нейроморфные системы: приборы, архитектура и алгоритмы, Микроэлектроника, 2023, том 52, № 5, с. 404-422.
- 46. Oh S., Hwang H., Yoo I.K. Ferroelectric materials for neuromorphic computing, APL Materials, 2019, V. 7(9), 091109.
- 47. Jerry M. et al. Ferroelectric FET analog synapse for acceleration of deep neural network training, IEEE International Electron Devices Meeting (IEDM), 2017.
- 48. George S. et al. Nonvolatile memory design based on ferroelectric FETs, Proceedings of the 53rd Annual Design Automation Conference on - DAC ’16, 2016.
- 49. Salahuddin S., Datta S. Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices, Nano Letters, 2008, V. 8(2), P. 405-410.
- 50. Yu E. et al. Ferroelectric FET Based Coupled- Oscillatory Network for Edge Detection, IEEE Electron Device Lett., 2021, V. 42, P. 1670-1673.
- 51. Ajayan J. et al. Ferroelectric Field Effect Transistors (FeFETs): Advancements, challenges and exciting prospects for next generation Non-Volatile Memory (NVM) applications, Materials Today Communications, 2023, V. 35, 105591.
- 52. Jiao H., Wang X., Wu S. et al. Ferroelectric field effect transistors for electronics and optoelectronics, Appl. Phys. Rev., 2023, V. 10, 011310.
- 53. Tang M. et al. Impact of HfTaO Buffer Layer on Data Retention Characteristics of Ferroelectric-Gate FET for Nonvolatile Memory Applications, IEEE Trans. Electron Devices, 2011, V. 58, P. 370-375.
- 54. Liu H. et al. ZrO Ferroelectric FET for Non-volatile Memory Application, IEEE Electron Device Lett., 2019, V. 40, P. 1419-1422.
- 55. Noh J. et al. First Experimental Demonstration of Robust HZO/β-GaO Ferroelectric Field- Effect Transistors as Synaptic Devices for Artificial Intelligence Applications in a High-Temperature Environment, IEEE Trans. Electron Devices, 2021, V. 68, P. 2515-2521.
- 56. Schroeder R., Majewski L., Grell M. All-Organic Permanent Memory Transistor Using an Amorphous, Spin-Cast Ferroelectric-like Gate Insulator, Adv. Mater., 2004, V. 16, P. 633-636.
- 57. Hoffmann M. et al. Fast read-after-write and depolarization fields in high endurance n-type ferroelectric FETs, IEEE Electron Device Lett., 2022, V. 43, P. 717-720.
- 58. Shu-Yau W. A new ferroelectric memory device, metal-ferroelectric semiconductor transistor, IEEE Trans. Electron Devices, 1974, V. 21, P. 499-504.
- 59. Yurchuk E. et al. Impact of Scaling on the Performance of HfO-Based Ferroelectric Field Effect Transistors, IEEE Trans. Electron Devices, 2014, V. 61, P. 3699-3706.
- 60. Luo J.-D. et al. Atomic Layer Deposition Plasma- Based Undoped-HfO Ferroelectric FETs for Non- Volatile Memory, IEEE Electron Device Lett., 2021, V. 42, P. 1152-1155.
- 61. Xu M. et al. High Mobility Flexible Ferroelectric Organic Transistor Nonvolatile Memory With an Ultrathin AlO Interfacial Layer, IEEE Trans. Electron Devices, 2018, V. 65, P. 1113-1118.
- 62. Yan S.-C. et al. High Speed and Large Memory Window Ferroelectric HfZrO FinFET for High- Density Nonvolatile Memory, IEEE Electron Device Lett., 2021, V. 42, P. 1307-1310.
- 63. Liu B. et al. Excellent ferroelectric HfZrO thin films with ultra-thin AlO serving as capping layer, Applied Physics Letters, 2021, V. 119, № 17.
- 64. Goh Y. et al. Ultra-thin HfZrO thin-film-based ferroelectric tunnel junction via stress induced crystallization, Applied Physics Letters, 2020, V. 117, № 24.
- 65. Мяконьких A.B., Смирнова Е.А., Клементе И.Э. Применение метода спектральной эллипсометрии для исследования процессов атомно-слоевого осаждения, Микроэлектроника, 2021, том 50, № 4, с. 264-273.
- 66. Hamouda W. et al. Physical chemistry of the TiN/ HfZrO interface, Journal of Applied Physics, 2020, V. 127, № 6.
- 67. Chouprik A. et al. Wake-up free ultrathin ferroelectric HfZrO films, Nanomaterials, 2023, V. 13, № 21, P. 2825.
- 68. Park M.H. et al. Study on the size effect in HfZrO films thinner than 8 nm before and after wake-up field cycling, Appl. Phys. Lett., 2015, V. 107(19), 192907.
- 69. Schenk T. et al. On the origin of the large remanent polarization in La: HfO, Adv. Electron. Mater, 2019, V. 5(12), 1900303.
- 70. Hamouda W. et al. Oxygen vacancy concentration as a function of cycling and polarization state in TiN/ HfZrO/TiN ferroelectric capacitors studied by x-ray photoemission electron microscopy, Applied Physics Letters, 2022, V. 120, № 20.
- 71. Goh Y. et al. Oxygen vacancy control as a strategy to achieve highly reliable hafnia ferroelectrics using oxide electrode, Nanoscale, 2020, V. 12, № 16, P. 9024- 9031.
- 72. Giannazzo F. et al. Conductive AFM of 2D Materials and Heterostructures for Nanoelectronics, Electrical Atomic Force Microscopy for Nanoelectronics, 2019.
- 73. Chouprik A. et al. Ferroelectricity in HfZrO thin films: A microscopic study of the polarization switching phenomenon and field-induced phase transformations, ACS applied materials & interfaces, 2018, V. 10, № 10, P. 8818-8826.
- 74. Martin S. et al. A new technique based on current measurement for nanoscale ferroelectricity assessment: Nano-positive up negative down, Review of Scientific Instruments, 2017, V. 88, № 2.
- 75. Florent K. Ferroelectric HfO for emerging ferroelectric semiconductor devices, Rochester Institute of Technology, 2015.
- 76. Stauffer L. Fundamentals of semiconductor c-v measurements, Keithley, 2009.
- 77. Schenk T. et al. Complex internal bias fields in ferroelectric hafnium oxide, ACS applied materials & interfaces, 2015, V. 7, № 36, P. 20224-20233.
- 78. Genenko Y.A. et al. Mechanisms of aging and fatigue in ferroelectrics, Materials Science and Engineering: B, 2015, V. 192, P. 52-82.
- 79. Jiang P. et al. Wake-up effect in HfO-based ferroelectric films, Advanced Electronic Materials, 2021, V. 7, № 1, P. 2000728.
- 80. Zhou Y. et al. Mechanisms of imprint effect on ferroelectric thin films, Journal of applied physics, 2005, V. 98, № 2.
- 81. Schenk T. et al. About the deformation of ferroelectric hystereses, Applied physics reviews, 2014, V. 1, № 4.
- 82. Park J.Y. et al. A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials-device integration perspective, Journal of Applied Physics, 2020, P. 128, № 24.
- 83. Shao X. et al. Investigation of Endurance Degradation Mechanism of Si FeFET With HfZrO Ferroelectric by an In Situ V Measurement, IEEE Transactions on Electron Devices, 2023, P. 70, № 6, P. 3043-3050.
- 84. Tarek A. et al. A FeFET with a novel MFMFIS gate stack: towards energy-efficient and ultrafast NVMs for neuromorphic computing, Nanotechnology, 2021, V. 32, 425201.
- 85. Gong N. Ma T.-P. A Study of Endurance Issues in HfO-Based Ferroelectric Field Effect Transistors: Charge Trapping and Trap Generation, IEEE Electron Device Letters, 2018, V. 39(1), P. 15-18.
- 86. Shujing Z. et al. Experimental Extraction and Simulation of Charge Trapping during Endurance of FeFET with TiN/HfZrO/SiO/Si (MFIS) Gate Structure, IEEE Transactions on Electron Devices, 2022, V. 69, Issue 3.
- 87. Zeng B. et al. Program/Erase Cycling Degradation Mechanism of HfO-Based FeFET Memory Devices, IEEE Electron Device Lett., 2019, V. 40, P. 710-713.
- 88. Mulaosmanovic H. et al. Ferroelectric FETs With 20-nm-Thick HfO Layer for Large Memory Window and High Performance, IEEE Trans. Electron Devices, 2019, V. 66, P. 3828-3833.
- 89. Ali T. et al. A Study on the Temperature-Dependent Operation of FluoriteStructure- Based Ferroelectric HfO Memory FeFET: Pyroelectricity and Reliability, IEEE Trans. Electron Devices, 2020, V. 67, P. 2981-2987.
- 90. Chen K.-Y., Tsai Y.-S., Wu Y.-H. Ionizing Radiation Effect on Memory Characteristics for HfO-Based Ferroelectric Field-Effect Transistors, IEEE Electron Device Lett., 2019, V. 40, P. 1370-1373.
- 91. Higashi Y. et al. Impact of Charge Trapping and Depolarization on Data Retention Using Simultaneous P-V and I-V in HfO-Based Ferroelectric FET, IEEE Trans. Electron Devices, 2021, V. 68, P. 4391-4396.
- 92. Liu C. et al. HfZrO-Based Ferroelectric Field- Effect Transistors With HfO Seed Layers for Radiation-Hard Nonvolatile Memory Applications, IEEE Trans. Electron Devices, 2021, V. 68, P. 4368.
- 93. Liu Y. et al. Investigation of the Impact of Externally Applied Out-of-Plane Stress on Ferroelectric FET, IEEE Electron Device Lett., 2021, V. 42, P. 264-267.
- 94. Ren C. et al. Highly robust flexible ferroelectric field effect transistors operable at high temperature with low-power consumption, Adv. Funct. Mater., 2020, V. 30, 1906131.
- 95. Maand T.P., Gong N. Retention and endurance of FeFET memory cells, IEEE, 2019, in 2019 IEEE11th International Memory Workshop IMW, Vol. 2019, P. 1.
- 96. Mikolajick T. et al. Hafnium oxide based ferroelectric devices for memories and beyond, IEEE, 2018, in 2018 International Symposium on VLSI Technology, Systems and Application, Vol. 1.
- 97. Lee Y.R., Trung T.Q., Hwang B.-U., Lee N.-E. A flexible artificial intrinsic-synaptic tactile sensory organ, Nat. Commun, 2020, V. 11, P. 2753.
- 98. Chen X., Han X., Shen Q.-D. PVDF-based ferroelectric polymers in modern flexible Electronics, Adv. Electron. Mater, 2017, V. 3, 1600460.
- 99. Chen L. et al. A van der Waals synaptic transistor based on ferroelectric HfZrO and 2D tungsten disulfide, Adv. Electron. Mater., 2020, V. 6, 2000057.
- 100. Osadaand M., Sasaki T. The rise of 2D dielectrics/ ferroelectrics, APL Mater., 2019, V. 7, 120902.
- 101. Rodriguez J.R. et al. Electric field induced metallic behavior in thin crystals of ferroelectric α-InSe, Appl. Phys. Lett., 2020, V. 117, 052901.
- 102. Li Y., Gong M., Zeng H. Atomically thin α-InSe: An emergent twodimensional room temperature ferroelectric semiconductor, J. Semicond, 2019, V. 40, 061002.