- PII
- S0544126925020023-1
- DOI
- 10.31857/S0544126925020023
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 54 / Issue number 2
- Pages
- 116-127
- Abstract
- Spontaneous stiction of MEMS elements during fabrication or operation is a serious problem. Capillary or electrostatic forces causing stiction can be eliminated, but dispersion forces are always present due to their fundamental nature and should be investigated in detail. In this paper, dispersion forces are studied experimentally for Si-Au and Si-Ru systems using a test structure - an adhered cantilever. Long (12 mm) and thin (10 μm) cantilevers allow measurements with high accuracy. The paper discusses in detail the fabrication procedure of the cantilevers and the measuring chip. Information on the adhesion energy is extracted from the cantilever shape, which is registered by a scanning interferometer. The roughness of the contacting surfaces is carefully studied and the equilibrium average distance between the surfaces during contact is obtained. The work is of interest not only for MEMS, but also allows one to gain fundamental knowledge about dispersion forces at small distances, which is inaccessible for other experimental methods.
- Keywords
- дисперсионные силы энергия адгезии шероховатость поверхности МЭМС
- Date of publication
- 20.03.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Maboudian R., Howe R.T. Critical review: Adhesion in surface micromechanical structures // J. Vacuum Sci. Technol. B. 1997. V. 15. P. 1-20.
- 2. Mastrangelo C., Hsu C. A simple experimental technique for the measurement of the work of adhesion of microstructures // Technical Digest IEEE Solid-State Sensor and Actuator Workshop. 1992. P. 208-212.
- 3. Legtenberg R., Tilmans H.A., Elders J., Elwenspoek M. Stiction of surface micromachined structures after rinsing and drying: model and investigation of adhesion mechanisms // Sens. Actuators A. 1994. V. 43. P. 230-238.
- 4. Tas N., Sonnenberg T., Jansen H., Legtenberg R., Elwenspoek M. Stiction in surface micromachining // J. Micromech. Microeng. 1996. V. 6. 385.
- 5. London F. Zur theorie und systematik der molekularkräfte // Zeitschrift für Physik. 1963. V. 63. P. 245-279.
- 6. Бойнович Л.Б. Дальнодействующие поверхностные силы и их роль в развитии нанотехнологии // Успехи химии. 2007. Т. 76(5). С. 510-528.
- 7. Дерягин Б.В., Чураев Н.В., Муллер В.М. Поверхностные силы. Москва: Наука, 1985. 398 с.
- 8. Churaev N.V. Surface forces in wetting films // Adv. Colloid Interface Sci. 2003. V. 103. P. 197-218.
- 9. Лифшиц Е.М. Теория молекулярных сил притяжения между твердыми телами // ЖЭТФ. 1955. T. 29. C. 94-110.
- 10. Дзялошинский И.Е., Лифшиц Е.М., Питаевский Л.П. Общая теория ван-дер-ваальсовых сил // Успехи физических наук. 1961. T. 73(3). C. 381-422.
- 11. Лифшиц Е.М., Питаевский Л.П. Статистическая физика, часть 2. Москва: Наука, 1978. 448 c.
- 12. Casimir H.B.G. On the attraction between two perfectly conducting plates // Proc. Kon. Ned. Akad. Wet. 1948. V. 51. P. 793-795.
- 13. Klimchitskaya G.L., Mohideen U., Mostepanenko V.M. The Casimir force between real materials: Experiment and theory // Rev. Mod. Phys. 2009. V. 81. 1827.
- 14. Rodriguez A.W., Capasso F., Johnson S.G. The Casimir effect in microstructured geometries // Nat. Photonics. 2011. V. 3. P. 211.
- 15. Palasantzas G., Sedighi M., Svetovoy V.B. Applications of Casimir forces: Nanoscale actuation and adhesion // Appl. Phys. Lett. 2020. V. 117. 120501.
- 16. Harris B.W., Chen F., Mohideen U. Precision measurement of the Casimir force using gold surfaces // Phys. Rev. A. 2000. V. 62. 052109.
- 17. Chan H.B., Aksyuk V.A., Kleiman R.N., Bishop D.J., Capasso F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force // Science. 2001. V. 291. P. 1941-1944.
- 18. van Zwol P.J., Palasantzas G., De Hosson J.T.M. Influence of random roughness on the Casimir force at small separations // Phys. Rev. B. 2008. V. 77. 075412.
- 19. Sedighi M., Svetovoy V.B., Palasantzas G. Casimir force measurements from silicon carbide surfaces // Phys. Rev. B. 2016. V. 93. 085434.
- 20. Mastrangelo C.H., Hsu C.H. Mechanical stability and adhesion of microstructures under capillary forces. I. Basic theory // J. Microelectromech. Syst. 1993. V. 2. P. 33-43.
- 21. Mastrangelo C.H., Hsu C.H. Mechanical stability and adhesion of microstructures under capillary forces. II. Experiments // J. Microelectromech. Syst. 1993. V. 2. P. 44-55.
- 22. de Boer M.P., Michalske T.A. Accurate method for determining adhesion of cantilever beams // J. Appl. Phys. 1999. V. 86. P. 817-827.
- 23. Knapp J.A., de Boer M.P. Mechanics of microcantilever beams subject to combined electrostatic and adhesive forces // J. Microelectromech. Syst. 2002. V. 11. P. 754-764.
- 24. DelRio F.W., Dunn M.L., Phinney L.M., Bourdon C.J., de Boer M.P. Rough surface adhesion in the presence of capillary condensation // Appl. Phys. Lett. 2007. V. 90. 163104.
- 25. van Zwol P.J., Palasantzas G., De Hosson J.T.M. Influence of random roughness on the adhesion between metal surfaces due to capillary condensation // Appl. Phys. Lett. 2007. V. 91. 101905.
- 26. DelRio F.W., de Boer M.P., Knapp J.A., Reedy E.D., Clews P.J., Dunn M.L. The role of van der Waals forces in adhesion of micromachined surfaces // Nat. Mater. 2005. V. 4. P. 629-634.
- 27. Svetovoy V., Postnikov A., Uvarov I., Stepanov F., Palasantzas G. Measuring the dispersion forces near the van der Waals-Casimir transition // Phys. Rev. Appl. 2020. V. 13. 064057.
- 28. Морозов О.В. Динамика осаждения и удаления фторуглеродной пленки в циклическом процессе плазмохимического травления кремния // Известия РАН. Серия физическая. 2024. Т. 88. № 4. C. 531-537.
- 29. Morozov O.V., Amirov I.I. Aspect-ratio-independent anisotropic silicon etching in a plasma chemical cyclic process // Russ. Microelectron. 2007. V. 36. P. 333-341.
- 30. Soldatenkov I.A., Stepanov F.I., Svetovoy V.B. Dispersion forces and equilibrium distance between deposited rough films in contact // Phys. Rev. B. 2022. V. 105. 075401.
- 31. van Zwol P.J., Svetovoy V.B., Palasantzas G. Distance upon contact: Determination from roughness profile // Phys. Rev. B. 2009. V. 80. 235401.
- 32. Muravyeva T.I., Uvarov I.V., Naumov V.V., Palasantzas G., Svetovoy V.B. Excessive number of high asperities for sputtered rough films // Phys. Rev. B. 2021. V. 104. 035415.
- 33. Postnikov A.V., Uvarov I.V., Svetovoy V.B. Experimental setup for measuring the dispersion forces by the adhered cantilever method // Rev. Sci. Instrum. 2023. V. 94. 043907.
- 34. Hopcroft M.A., Nix W.D., Kenny T.W. What is the Young’s modulus of silicon? // J. Microelectromech. Syst. 2010. V. 19. P. 229-238.
- 35. Soldatenkov I.A., Svetovoy V.B. Adhesion energy for a nonideal cantilever and its relation to the Casimir- Lifshitz forces // Physics. 2024. V. 6. 1204.
- 36. Derjaguin B. Untersuchungen über die Reibung und Adhäsion, IV // Kolloid-Zeitschrift. 1934. V. 69. P. 155-164.