- PII
- S0544126925010052-1
- DOI
- 10.31857/S0544126925010052
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 54 / Issue number 1
- Pages
- 34-54
- Abstract
- The article presents results of studying the formation processes of the composite material based on Ni nanostructures arrays – nanopillars or nanotubes embedded in thin porous anodic alumina by electrochemical deposition. Ni nanopillars were formed in the direct current mode (dc-deposition); nanotubes – in the alternating current mode (ac-deposition). Morphology analysis of these nanostructures shows that inner profile of the deposit and micromorphology of the nanostructure change with deposition duration and depend on the motion mode and diameter of hydrogen bubbles released under Ni electrodeposition. The morphology, structure, and electrochemical properties of the obtained composite materials were studied using scanning electron microscopy, atomic force microscopy, X-ray diffraction analysis, and the method of linear polarization in potentiodynamic mode. The obtained nanostructures can be used to fabricate planar electrodes for electrochemical biosensors and another nanodiagnostics and microelectronics devices
- Keywords
- магнитные нанокомпозиты никель пористый оксид алюминия массивы наноструктур электрохимическое осаждение линейная поляризация вольтамперометрия
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 20
References
- 1. Kelsall R., Hamley I., Geoghegan M. Nanoscale Science and Technology. Wiley: Chichester. 2005.
- 2. Борисенко В.Е., Воробьева А.И., Данилюк А.Л., Уткина Е.А. Наноэлектроника: Теория и практика. Бином: Москва. 2013.
- 3. dos Santos M.V.P., Velo M., Domingos R.D. et al. Electrodeposited nickel nanowires for magnetic-field effect transistor (MagFET) // J. Integrated Circ. Syst. 2016. V. 11. P. 13. https://doi.org/10.29292/jics.v11i1.425
- 4. Ross C.A., Hwang M., Shima M. et al. Micromagnetic behavior of electrodeposited cylinder arrays // Phys. Rev. B. 2002. V. 65. P. 144417. https://doi.org/10.1103/PhysRevB.65.144417
- 5. Proenca M.P., Sousa C.T., Ventura J. et al. Distinguishing nanowire and nanotube formation by the deposition current transients // Nanoscale Res. Lett. 2012. V. 7. P. 280. https://doi.org/10.1186/1556-276X-7-280
- 6. Liu J.P., Fullerton E., Gutfleisch O., Sellmyer D.J. Nanoscale Magnetic Materials and Applications. Berlin: Springer. 2009.
- 7. Vorobjova A.I., Shimanovich D.L., Yanushkevich K.I. et al. Properties of Ni and Ni–Fe nanowires electrochemically deposited into a porous alumina template // Beilstein J. Nanotechnol. 2016. V. 7. P. 1709. https://doi.org/10.3762/bjnano.7.163
- 8. Sun X.C., Huang Y.H., Nikles D.E. FePt and CoPt magnetic nanoparticles film for future high density data storage media // Int. J. Nanotechnol. 2004. V. 1. P. 328. https://doi.org/10.1504/IJNT.2004.004914
- 9. Xu C., Akakuru O.U., Zheng J.J., Wu A.G. Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections // Front. Bioeng. Biotechnol. 2019. V. 7. P. 141. https://doi.org/10.3389/fbioe.2019.00141
- 10. Darton N.J., Ionescu A., Justin Llandro J. (Eds.) Magnetic Nanoparticles in Biosensing and Medicine. Cambridge University Press: Cambridge, UK. 2019.
- 11. Shen W.Z., Cetinel S., Montemagno C. Application of biomolecular recognition via magnetic nanoparticle in nanobiotechnology // J. Nanoparticle Res. 2018. V. 20. P. 130. https://doi.org/10.1007/s11051-018-4232-4
- 12. Makarov A., Windbacher T., Sverdlov V., Selberherr S. CMOS-compatible spintronic devices: A review // Semicond. Sci. Technol. 2016. V. 31. P. 11. https://doi.org/10.1088/0268-1242/31/11/113006
- 13. Giraud M., Delapierre F.D., Wijkhuisen A. et al. Evaluation of in-flow magnetoresistive chip cell-counter as a diagnostic tool // Biosensors 2019. V. 9. P. 105. https://doi.org/10.3390/bios9030105
- 14. Denmark D.J., Bustos-Perez X., Swain A. et al. Readiness of magnetic nanobiosensors for point-of-care commercialization // J. Electron. Mater. 2019. V. 48. P. 4749. https://doi.org/10.1007/s11664-019-07275-7
- 15. Choi J., Gani A.W., Bechstein D.J.B. et al. Portable, one-step, and rapid GMR biosensor platform with smartphone interface // Biosens. Bioelectron. 2016. V. 85. P. 1. https://doi.org/10.1016/j.bios.2016.04.046
- 16. Su D.Q., Wu K., Krishna V.D. et al. Detection of influenza a virus in swine nasal swab samples with a wash-free magnetic bioassay and a handheld giant magnetoresistance sensing system // Front. Microbiol. 2019. V. 10. P. 1077. https://doi.org/10.3389/fmicb.2019.01077
- 17. Mátéfi-Tempfli S., Mátéfi-Tempfli M., Vlad A. Nanowires and nanostructures fabrication using template methods: a step forward to real devices combining electrochemical synthesis with lithographic techniques // J. Mater. Sci.: Mater. Electron. 2009. V. 20(1). P. S249. https://doi.org/10.1007/s10854-008-9568-6
- 18. Woo Lee, Sang-Joon Park. Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures // Chem. Rev. 2014. V. 114. P. 7487. https://doi.org/10.1021/cr500002z
- 19. Vorobjova A.I., Tishkevich D.I., Outkina E.A. A Study of Ta2O5 Nanopillars with Ni Tips Prepared by Porous Anodic Alumina Through-Mask Anodization // Nanomat. 2022. V. 12. P. 1344. https://doi.org/10.3390/nano12081344
- 20. Maximenko A., Fedotova J., Marszałek M. et al. Magnetic characteristics of CoPd and FePd antidot arrays on nanoperforated Al2O3 templates // J. Magn. Magn. Mater. 2016. V. 400. P. 200. https://doi.org/10.1016/j.jmmm.2015.08.057
- 21. Verma N., Singh K.C., Jindal J. Fabrication of nanomaterials on porous anodic alumina template using various techniques // Indian J. Adv. Chem. Sci. 2015. V. 3(3). P. 235. https://doi.org/10.1023/A:1024479827507
- 22. Vorobyova A.I., Outkina E.A., Komar O.M. Study of metal pillar nanostructure formation with thin porous alumina template // Thin Solid Films 2013. V. 548. P. 109. https://doi.org/10.1016/j.tsf.2013.09.016
- 23. Molares M.E., Buschmann V., Dobrev D. et al. Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes // Adv. Mater. 2001. V. 13. P. 62. https://doi.org/10.1002/1521-4095 (200101)13:13.0.CO;2-7
- 24. Sousa C.T., Leitao D.C., Proenca M.P. et al. Nanoporous alumina as templates for multifunctional applications // Appl. Phys. Rev. 2014. V. 1. P. 031102. https://doi.org/10.1063/1.4893546
- 25. Jai P., Gerrard E., Nurshahidah A., Derek F. Progress in nano-engineered anodic aluminum oxide membrane developmens // Mater. 2011. V. 4(3). P. 487. https://doi.org/10.3390/ma4030487
- 26. Ying J.Y. Nanoporous systems and templates the unique self–assembly and synthesis of nanostructures // Sci. Spectra 1999. V. 18. P. 56.
- 27. Hao Q., Huang H., Fan X. et al. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarray // Nanotech. 2017. V. 28. P. 105301. https://doi.org/10.1088/1361-6528/aa596d
- 28. Wei Q., Fu Y., Zhang G. et al. Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion // Nano Energy 2018. V. 55. P. 234. https://doi.org/10.1016/j.nanoen.2018.10.070
- 29. Poinern G.E.J., Le X.T., Hager M. et al. Electrochemical Synthesis, Characterisation, and Preliminary Biological Evaluation of an Anodic Aluminium Oxide Membrane with a pore size of 100 nanometres for a Potential Cell Culture Substrate // Am. J. Biomed. Res. 2013. V. 3(6). P. 119. https://doi.org/10.5923/j.ajbe.20130306.01
- 30. Shaban M., Hamdy H., Shahin F. et al. Uniform and reproducible barrier layer removal of porous anodic alumina membrane // J. Nanosci. Nanotechnol. 2010. Vol. 10(5). P. 3380. https://doi.org/10.1166/jnn.2010.2259.
- 31. Tian M., Xu S., Wang J. et al. Penetrating the Oxide Barrier in Situ and Separating Freestanding Porous Anodic Alumina Films in One Step // Nano. Lett. 2005. V. 5(4). P. 697. https://doi.org/10.1021/nl0501112
- 32. Xiaowei Zhao, Seok-Kyoo Seo, Ung-Ju Lee, Kun-Hong Lee. Controlled Electrochemical Dissolution of Anodic Aluminum Oxide for Preparation of Open-Through Pore Structures // J. Electrochemical Society 2007. V. 154(10). P. 553. https://doi.org/10.1149/1.2759780
- 33. Vorobyova A.I., Outkina E.A., Khodin A.A. Nickel/Alumina nanocomposites by ac electrochemical processing // Applied Physics A. Mater. Sci. Proc. 2016. V. 122(2). P. 109. https://doi.org/10.1007/s00339-016-9611-z
- 34. Воpобьева А.И., Уткина Е.А., Комаp О.М. Одноpодное осаждение никеля в поpы упоpядоченного тонкопленочного оксида алюминия // Микpоэлектpоника. 2013. Т. 42(1). С. 1. https://doi.org/10.7868/S0544126913010079
- 35. Inguanta R., Piazza S., Sunseri C. Influence of electrodeposition techniques on Ni nanostructures // Electrochimica Acta 2008. V. 53. P. 5766. https://doi.org/10.1016/j.electacta.2008.03.045
- 36. Fukunaka Y., Konishi Y., Ishii R. Producing Shape-Controlled Metal Nanowires and Nanotubes by an Electrochemical Method // Electrochem. Solid-State Lett. 2006. V. 9(3). P. 62. https://doi.org/10.1149/1.2165711
- 37. Ranaweera R., Luo L. Electrochemistry of nanobubbles // Current Opinion in Electrochemistry. 2020. – V. 22. P. 102. https://doi.org/10.1016/j.coelec.2020.04.019
- 38. Jadhav A. J., Barigou M. Electrochemically Induced Bulk Nanobubbles // Ind. Eng. Chem. Res. 2021. V. 60 (49). P. 17999. https://doi.org/10.1021/acs.iecr.1c04046
- 39. Brown I.W.M., Bowden M.E., Kemmitt T. et al. Structural and Thermal Characterisation of Nanostructured Alumina Templates // Appl. Phys. 2006. V. 6(3). Р. 557. https://doi.org/10.1016/j.cap.2005.11.060
- 40. Volpe M., Inguanta R., Piazza S., Sunseri C. Optimized bath for electroless deposition of palladium on amorphous alumina membranes // Surf. Coat. Technol. 2006. V. 200(20). P. 5800. https://doi.org/10.1016/j.surfcoat.2005.08.126
- 41. Sulka G.D. Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing // In: Nanostructured Materials in Electrochemistry. Ed. by Ali Eftekhari. WILEY-VCH Verlag GmbH & Co. 2008. ISBN: 978-3-527-31876-6 Р. 1-116.
- 42. Prioteasa P., Petica A., Popa M. et al. Electrochemical deposition of nickel for micro-mechanical systems // Rev. Chim. 2011. V. 62(5). P. 543.
- 43. Pan H., Liu B., Yi J. et al. Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties // J. Phys. Chem. B 2005. V. 109. P. 3094. https://doi.org/10.1021/jp0451997
- 44. West A.R. Solid State Chemistry and its Applications. John Wiley & Sons Ltd.: Chichester. 1985.
- 45. McCafferty E. Introduction to Сorrosion Science. Springer: New York. 2010.
- 46. Stansbury E.E., Buchanan R.A. Fundamentals of the Electrochemical Corrosion. ASM Int. Geauga, OH, USA. 2000.
- 47. Scully J.R. Polarization resistance method for determination of instantaneous corrosion rates // Corossion 2000. V. 56. P. 199. https://doi.org/10.5006/1.3280536
- 48. Stern M., Geary A.L. Electrochemical polarization // J. Electrochem. Soc. 1957. V. 104. P. 56.
- 49. Rybalka K.V., Beketaeva L.A., Davydov A.D. Estimation of corrosion current by the analysis of polarization curves: Electrochemical kinetics mode // Rus. J. Electrochem. 2014 V. 50. P. 108. https://doi.org/10.1134/S1023193514020025
- 50. Onyeachu B.I., Peng X., Oguzie E.E. et al. Characterizing the electrochemical corrosion behavior of a Ni–28wt.% Al composite coating in 3.5 % NaCl Solution // Port. Electrochim. Acta 2015. V. 33. P. 69(2). https://doi.org/10.4152/pea.201502069
- 51. Qin L.Y., Lian S.J., Jiang Q. Effect of grain size on corrosion behavior of electrodeposited bulk nanocrystalline Ni // Trans. Nonferrous Met. Soc. China 2010. V. 20(1). P. 82. https://doi.org/10.1016/S1003-6326 (09)60101-1
- 52. Wang X., Wang B., Zhang L. et al. Effect of different welding processes on electrochemical and corrosion behavior of pure nickel in 1 M NaCl solution // Metals 2017. V. 7(12). P. 532. https://doi.org/10.3390/met7120532