Modeling of Structural Properties and Transport Phenomena in Doped Multicomponent 2D Semiconductors
Table of contents
Share
QR
Metrics
Modeling of Structural Properties and Transport Phenomena in Doped Multicomponent 2D Semiconductors
Annotation
PII
S0544126924060058-1
Publication type
Article
Status
Published
Authors
M. M. Asadov 
Affiliation:
Nagiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of Azerbaijan
Azerbaijan Technical University, Ministry of Science and Education of Azerbaijan
V. F. Lukichev
Affiliation: Valiev Institute of Physics and Technology, Russian Academy of Sciences
Pages
513-538
Abstract
Using density functional theory (DFT), the electronic structure, lattice parameters, magnetic and thermodynamic properties of TlIn1–xCrxS2 with a monoclinic system were calculated. The influence of the degree of doping with chromium impurities on the properties of TlIn1–xCrxS2 supercells has been studied. Calculations were carried out using ab initio methods in the local electron density approximation (LDA) and in the generalized gradient approximation (GGA). Spin-orbit and Coulomb interactions were taken into account in DFT calculations. A change in the concentration of chromium impurity (x = 0.001–0.02) in TlInS2 does not lead to a change in the equilibrium lattice parameters and the type of magnetic ordering in TlIn1–xCrxS2. Phase equilibria and stability of binary and ternary compounds were studied by the thermodynamic method and the functional DFT GGA method in the Tl–In–S ternary system. The constructed isothermal section of the phase diagram at 298 K confirms the insignificant region of homogeneity, based on intermediate ternary compounds, of the Tl–In–S system. The formation energies of the compounds TlInS2 and TlIn1–xCrxS2 (x = 0.001–0.02) were calculated by the DFT method and are thermodynamically consistent with each other. The energy of formation of the TlInS2 compound, calculated by theoretical methods, is also consistent with experimental data. This indicates the adequacy of the calculation models used. In order to determine stable doping conditions, we analyzed the thermodynamic properties of the phases of the Tl–In–S system, established stable states of multicomponent phases, stable equilibria between binary and ternary compounds of the TlIn1–xCrxS2 system. Polycrystals were synthesized and TlIn1–xCrxS2 single crystals with different chromium impurity concentrations (x = 0, 0.001 and 0.02) were grown from them. The crystal structure, thermodynamic, dielectric, electrical and dosimetric characteristics of TlIn1–xCrxS2 single crystals were studied. The calculated thermodynamic and physical properties of the TlIn1–xCrxS2 phases are compared with experimental data.
Keywords
многокомпонентный полупроводник TlIn1–xCrxS2 теория функционала плотности электронные свойства Cr-легирование монокристаллы явления переноса диэлектрические свойства переменный ток проводимость рентгеновская дозиметрия
Acknowledgment
This study was partially supported by the Foundation for the Development of Science under the President of the Republic of Azerbaijan (grant EİFBGM-4-RFTFl/2017-21/05/l-M-07) and the Russian Foundation for Basic Research (grant 18-57-06001 No. Az_a, 2018)
Received
02.03.2025
Number of purchasers
0
Views
22
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Мустафаева С. Н., Алиев В. А., Асадов М. М. Прыжковая проводимость на постоянном токе в монокристаллах TlGaS2 и TlInS2 // Физика твердого тела. 1998. Т. 40. № 4. С. 612 – 615.

2. Мустафаева С. Н., Асадов М. М., Рамазанзаде В. А. Диэлектрические свойства и проводимость на переменном токе монокристаллов TlInS2 // Физика твердого тела. 1996. Т. 38. № 1. С. 14–18.

3. Mustafaeva S. N., Asadov M. M. Effect of chemical composition of TlIn1-xErxS2 (0 ≤ x ≤ 0.01) crystals on their dielectric characteristics and the parameters of localized states // Physics of the Solid State. 2019. V. 61. No. 11. P. 1999–2004. https://doi.org/10.1134/S1063783419110246

4. Mustafaeva S. N., Asadov M. M., Huseynova S. S., Hasanov N. Z., Lukichev V. F. Ab initio calculations of electronic properties, frequency dispersion of dielectric coefficients and the edge of the optical absorption of TlInS2:Sn single crystals // Physics of the Solid State. 2022. V. 64. No. 6. P. 617–627. https://doi.org/10.21883/PSS.2022.06.53823.299

5. Мустафаева С. Н., Асадов С. М., Гусейнова С. С. Ab initio расчет структуры и частотные зависимости диэлектрических свойств новых полупроводников TlIn1−xTmxS2 (x = 0.001 и 0.005) // Физика твердого тела. 2024. Т. 66. № 4. C. 542-549. https://doi.org/10.61011/FTT.2024.04.57789.8

6. Asadov S. M., Mustafaeva S. N., Huseinova S. S., Lukichev V. F. Simulation of Electronic Properties, Enthalpy of Formation, and Dielectric Characteristics of Yb-Doped Single Crystal TlInS2 // Russian Journal of Physical Chemistry A. 2024. V. 98. No. 1. P. 1–8. https://doi.org/10.1134/S0036024424010023

7. Gasanly N. M. Low temperature absorption edge and photoluminescence study in TlIn(Se1-xSx)2 layered mixed crystals // Physica B: Condensed Matter. 2018. V. 530. P. 82–85. https://doi.org/10.1016/j.physb.2017.11.042

8. El-Nahass M. M., Ali H. A. M., Abu-Samaha F. S. H. Optical characteristics of Tl0.995Cu0.005InS2 single crystals // Physica B: Condensed Matter. 2013 V. 415. P. 57–61. https://doi.org/10.1016/j.physb.2013.01.036

9. Delice S., Gasanly N. M. Defect characterization in neodymium doped thallium indium disulfide crystals by thermoluminescence measurements // Physica B: Condensed Matter. 2016. V. 499. P. 44–48. http://dx.doi.org/10.1016/j.physb.2016.07.006

10. Seyidov M. Yu., Mikailzade F. A., Suleymanov R. A., Aliyeva V. B., Mammadov T. G., Sharifov G. M. Polarization switching in undoped and La-doped TlInS2 ferroelectric-semiconductors // Physica B: Condensed Matter. 2017 V. 526. P. 45–53. https://doi.org/10.1016/j.physb.2017.07.003

11. Таshмеtоv M. Yu., Khаllоkоv F. K., Ismatov N. B., Umarov S. Kh. Influence of accelerated electrons on the structure, crystallite size and surface of a TlIn1-xCrxS2 crystal with x = 0.01 // Uzbek Journal of Physics. 2023. V. 23. No. 4. P. 51–56. https//doi.org/10.52304/.v23i4.289

12. Khallokov F. К., Imanova G. T., Umarov S. Kh., Tashmetov M. Yu., Gasanov N. Z., Esanov Z. U., Bekpulatov I. R. Influence of electron irradiation on the band gap and microhardness of TlInS2, TlInSSe and TlIn0.99Cr0.01S2 single crystals // Materials Research Innovations. 2004. P. 1–5. https://doi.org/10.1080/14328917.2024.2363583

13. Okumus E., Tokdemir Ö.S, Chumakov Y. M. Identification of Mn dopant in the structure of TlInS2 layered semiconductor // Materials Research Express. 2019. V. 6. No. 5. P. 056110. https://doi.org/10.1088/2053-1591/ab063e

14. Mikailov F. A., Rameev B. Z., Kazan S., Yıldız F., Aktaş B. Electron paramagnetic resonance investigation of Fe3+ doped TlInS2 single crystal // Solid State Communications. 2005. V. 35. No. 1-2. P. 114–118. https://doi.org/10.1016/j.ssc.2005.03.043

15. Huang Z., Peng X., Yang H., He C., Xue L., Hao G., Zhang C., Liu W., Qi X., Zhong J. The structural, electronic and magnetic properties of bi-layered MoS2 with transition-metals doped in the interlayer // RSC Advances. 2013. V. 3. No. 31. P. 12939–12943. https://doi.org/10.1039/C3RA41490F

16. Ali R., Hanif M., Shah S.A.B. Abbas S. Z., Karim M. R. A., Arshad M., Ahmad S. H. A. Effect of chromium-doping on structure and opto-electronics properties of nanostructured indium tin oxide thin films // Applied Physics A. 2022. V. 128. No. 508. P. 1–6 https://doi.org/10.1007/s00339-022-05639-1

17. Asadov M. M., Mustafaeva S. N., Guseinova S. S., Lukichev V. F. Ab Initio calculations of the electronic properties and the transport phenomena in graphene materials // Physics of the Solid State. 2020. V. 62. No 11. P. 2224–2231. https://doi.org/10.1134/S1063783420110037

18. Asadov M. M., Mustafaeva S. N., Guseinova S. S., Lukichev V. F., Tagiev D. B. Ab Initio modeling of the effect of the position and properties of ordered vacancies on the magnetic state of a graphene monolayer // Physics of the Solid State. 2021. V. 63. No. 5. P. 797–806. https://doi.org/10.1134/S1063783421050036.

19. Asadov M. M., Mustafaeva S. N., Guseinova S. S., Lukichev V. F. Simulation of supercell defect structure and transfer phenomena in TlInTe2 // Russian Microelectronics. 2023. V. 52. No. 1. P. 21–31. https://doi.org/10.1134/S1063739722700196

20. Asadov M. M., Mammadova S. O., Guseinova S. S., Mustafaeva S. N., Lukichev V. F. Simulation of the adsorption and diffusion of lithium atoms on defective graphene for a Li-ion battery // Russian Microelectronics. 2023. V. 52. No. 3. P. 167–185. https://doi.org/10.1134/S1063739723700336

21. Asadov M. M., Mammadova S. O., Mustafaeva S. N., Huseynova S. S., Lukichev V. F. Modeling of the electronic properties of M-doped supercells Li4Ti5O12–M (М = Zr, Nb) with a monoclinic structure for lithium-lon batteries // Russian Microelectronics. 2024. V. 53. No. 1. P. 1–13. https://doi.org/10.1134/S1063739723600127

22. Asadov M. M., Huseinova S. S., Mustafaeva S. N., Mammadova S. O., Lukichev V. F. Simulation of the physical-chemical and electronic properties of lithium-containing 4H–SiC and binary phases of the Si–C–Li system // Russian Microelectronics. 2024. V. 53. No. 1. P. 14–34. https://doi.org/10.1134/S1063739723600097

23. Asadov S. M., Mustafaeva S. N., Guseinov D. T. X-ray dosimetric characteristics of AgGaS2 single crystals grown by chemical vapor transport // Inorganic Materials. 2017. V. 53. No. 5. P. 457–461. https://doi.org/10.1134/S0020168517050028

24. Asadov, S. M., Mustafaeva, S. N., Guseinov, D. T., Kelbaliev K. I. Dependence of the X-ray dosimetric parameters of AgGaS2xSe2–2x single crystals on their composition // Technical Physics. 2018. V. 63. No. 4. P. 546–550. https://doi.org/10.1134/S1063784218040047

25. Asadov S. M., Mustafaeva S. N., Guseinov D. T., Kelbaliev K. I., Lukichev V. F. Dependence of the X-ray Sensitivity of AgGaS2 Single Crystals on Faces (001) and (100) on Dose and Hardness of Radiation // Russian Microelectronics. 2022. V. 51. No. 3. P. 117–125. https://doi.org/10.1134/S1063739722030027

26. Vuckovic S., Song S., Kozlowski J., Sim E., Burke K. Density functional analysis: The theory of density-corrected DFT // Journal of Chemical Theory and Computation. 2019. V. 15. P. 1–30. https://doi.org/10.1021/acs.jctc.9b00826.

27. Holzer C., Franzke Y. J., Pausch A. Current density functional framework for spin–orbit coupling // The Journal of Chemical Physics. 2022. V. 157. P. 204102-16. https://doi.org/10.1063/5.0122394

28. Asadov M. M., Mustafaeva S. N., Guseinova S. S., Lukichev V. F. Ab initio calculations of electronic properties and charge transfer in Zn1-xCuxO with wurtzite structure // Physics of the Solid State. 2022. V. 64. No. 5. P. 528–539. https://doi.org/10.21883/PSS.2022.05.54011.270

29. Babuka T., Gomonnaic O. O., Glukhova K. E., Kharkhalisa L. Yu., Sznajdere M., Zahn D.R.T. Electronic and Optical Properties of the TlInS2 Crystal: Theoretical and Experimental Studies // Acta Physica Polonica A. 2019. V. 136. No. 4. Р. 640-644. https://doi.org/ 10.12693/APhysPolA.136.640

30. Asadov M. M., Mammadova S. O., Huseinova S. S., Mustafaeva S. N., Lukichev V. F. Ab initio calculation of the band structure and properties of modifications of the Ti3Sb compound doped with lithium // Physics of the Solid State. 2022. V. 64. No. 11. Р. 1594-1609. https://doi.org/10.21883/PSS.2022.11.54179.395

31. Alekperov O. Z., Ibragimov G. B., Axundov I. A Growth of orthorhombic and tetragonal modifications of TlInS2 from its monoclinic phase // Physica Status Solidi C. 2009. Vol. 6. No. 5. P. 981–984. https://doi.org/10.1002/pssc.200881191

32. Mills K.C. Thermodynamic Data for Sulphides, Selenides and Tellurides, NPL, Teddington. John Wiley & Sons, Incorporated, 1974. ISBN 9780470606551. 845 p.

33. Vasiliev V. P., Minaev V. S. Tl-S phase diagram, structure and thermodynamic Properties // Journal of Optoelectronics and Advanced Materials. 2008. V. 10. No. 6. P. 1299–1305.

34. Vasiliev V. P. Correlations between the Thermodynamic Properties of II–VI and III–VI Phases // Inorganic Materials. 2007. V. 43. No. 2. P. 115–124. https://doi.org/10.1134/S0020168507020045

35. http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/welcome.html

36. Kubaschewski O., Alcock C. B., Spencer P. J. Materials Thermochemistry. Pergamon Press, 1993. 363 p. ISBN 9780080418896

37. Okamoto, H. In-S (Indium-Sulfur). Journal of Phase Equilibria and Diffusion. 2013. V. 34. P. 149–150. https://doi.org/10.1007/s11669-012-0152-7

38. Waldner P., Sitte W. Thermodynamic modeling of the Cr–S system // International Journal of Materials Research. 2011. V. 102. No. 10. P. 1216–1225. https://doi:10.3139/146.110587

39. https://himikatus.ru/art/phase-diagr1/In-Tl.php

40. Бабанлы М. Б., Юсибов Ю. А. Электрохимические методы в термодинамике неорганических веществ. Баку, Элм, 2011. с. 145.

41. Asadov M. M., Kuli-zade E. S. Phase equilibria, thermodynamic analysis and electrical properties of the Li2O–Y2O3–B2O3 system // Journal of Alloys and Compounds. 2020. V. 842. P. 155632–32. https://doi.org/10.1016/j.jallcom.2020.155632

42. Mott N. F., Davis E. A. Electronic Processes in Non-Crystalline Materials. OUP, Oxford, 2012. 590 p. ISBN: 9780199645336

43. Pollak M. On the frequency dependence of conductivity in amorphous solids // Philosophical Magazine. 1971. V. 23. No. 183. P. 519–542. https://doi:10.1080/14786437108216402

44. Arshak K., Korostynska O. (Eds.) Advanced Materials and Techniques for Radiation Dosimetry. Boston. London. Artech House, Inc. 2006. 217 p. ISBN: 978-1-58053-340-9.

Comments

No posts found

Write a review
Translate