Mathematical modeling of a microprocessor liquid cooling system
Table of contents
Share
QR
Metrics
Mathematical modeling of a microprocessor liquid cooling system
Annotation
PII
S0544126924050056-1
Publication type
Article
Status
Published
Authors
А. I. Andreev 
Affiliation: Russia Federal State Budgetary Educational Institution of Higher Education, Astrakhan State Technical
Pages
397-406
Abstract
This work examines the efficiency of the microprocessor-cooling system and maintaining the optimal temperature of electronic components. To do this, experiments were carried out on the existing microprocessor cooling system with control of all main parameters, primarily such as temperature and coolant flow, performance and temperature of the processor. Based on the data obtained, a mathematical model was built that describes the change in microprocessor power and allows one to calculate the temperatures and speeds of coolants, as well as obtain the most effective modes for the operation of the cooling system. The obtained experimental data and mathematical model make it possible to predict the required power of the cooling system and the operating parameters of microelectronic components, which is especially important when new generations of microprocessors with the highest performance appear. The data obtained also makes it possible to calculate parameters for existing processors in order to maximize the efficiency and reliability of their operation, which is also relevant for other electronic devices, in particular microcontrollers.
Keywords
микропроцессор жидкостная система охлаждения математическая модель теплопроводимость коэффициент теплопередачи электроника системы охлаждения тепловыделение микропроцессора тепловой режим надёжность
Acknowledgment
The work was carried out with financial support from the Foundation for Assistance to Small Innovative Enterprises.
Received
23.02.2025
Number of purchasers
0
Views
13
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Федорович Д.С. Деградация центральных процессоров в персональных компьютерах / Д. С. Федорович; науч. рук. С. В. Сизиков // Актуальные проблемы энергетики 2020 [Электронный ресурс]: материалы студенческой научно-технической конференции / сост. И. Н. Прокопеня. – Минск: БНТУ, 2020. – С. 278–284.

2. Srinivasan J. et al. The case for lifetime reliability-aware microprocessors // ACM SIGARCH Computer Architecture News. – 2004. – Т. 32. – № 2. – С. 276.

3. Moore G. BCramming more components onto integrated circuits,[Electronics, vol. 38, pp. 114–117, Apr. 19, 1965.

4. Mahajan R., Chiu C., Chrysler G. Cooling a microprocessor chip // Proceedings of the IEEE. – 2006. – Т. 94. – № 8. – С. 1476–1486.

5. Пехуров Н.В., Нацаренус П.А. Сравнение методов традиционного охлаждения с иммерсионным методом охлаждения систем // Вестник магистратуры. – 2019. – № 6–2. – С. 93.

6. Шелехов И.Ю., Коваленко А.Е., Залуцкий А.А. Оптимизация процесса использования вторичной тепловой энергии // The Scientific Heritage. – 2022. – № 82–1. – С. 68–70.

7. Немтырёва К.А. Системы охлаждения в ПК / Конкурс лучших студенческих работ – 2021. – С. 9–12.

8. Harun M.A., Sidik N.A.C. A review on development of liquid cooling system for central processing unit (CPU) // Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. – 2020. – Т. 78. – № 2. – С. 98–113.

9. Gullbrand J. et al. Liquid cooling of compute system // Journal of Electronic Packaging. – 2019. – Т. 141. – № 1. – С. 010802.

10. Halim N.F.C. and Sidik N.A.C. “Nanorefrigerants: A Review on Thermophysical Properties and Their Heat Transfer Performance.” Journal of Advanced Research in Applied Sciences and Engineering Technology 20, No. 1 (2020): 42–50. 11.

11. Halim N.F.C. and Sidik N.A.C. “Mixing Chamber for Preparation of Nanorefrigerant.” Journal of Advanced Research in Applied Sciences and Engineering Technology 21, No 1 (2020): 32–40.

12. Effect of Temperature on Power-Consumption with the i7–2600K /. 2011 https://forums.anandtech.com

13. Рыбаков А.В. Разработка системы охлаждения процессора персонального компьютера с использованием элемента Пельтье // Договора № 17–1–004502 от 19.10. 2017 г. между Фондом Президентских грантов и РМПО. Проект «Организация региональной сети и проведение бизнес-школ-выставок, направленных на развитие у школьников и студентов навыков научного предпринимательства, способствующих внедрению экономически перспективных разработок молодых инноваторов». – С. 12.

14. Лебакин А.И., Червенчук В.Д., Забудский А.И. К вопросу о практическом применении элементов Пельтье // Роль научно-исследовательской работы обучающихся в развитии АПК. – 2019. – С. 165–173.

15. Al-Rashed M.H. et al. Investigation on the CPU nanofluid cooling // Microelectronics Reliability. – 2016. – Т. 63. – С. 159–165.

16. Bahiraei M., Heshmatian S. Electronics cooling with nanofluids: A critical review // Energy Conversion and Management. – 2018. – Т. 172. – С. 438–456.

17. Qi C. et al. Experimental study on thermo-hydraulic performances of CPU cooled by nanofluids // Energy Conversion and Management. – 2017. – Т. 153. – С. 557–565.

18. Deng Y., Liu J. Optimization and evaluation of a high-performance liquid metal CPU cooling product // IEEE Transactions on Components, Packaging and Manufacturing Technology. – 2013. – Т. 3. – № 7. – С. 1171–1177.

19. Sarafraz M.M. et al. On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: A comparative study // Applied Thermal Engineering. – 2017. – Т. 112. – С. 1373–1381.

20. Habibishandiz M., Saghir M.Z. A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms // Thermal Science and Engineering Progress. 2022. Т. 30. С. 101267.

21. Fan F. et al. A novel thermal efficiency analysis on the thermo-hydraulic performance of nanofluids in an improved heat exchange system under adjustable magnetic field // Applied Thermal Engineering. 2020. Т. 179. С. 115688.

22. Букин В.Г. Гидравлическое сопротивление при кипении хладагентов в трубах горизонтальных и вертикальных испарителей судовых холодильных машин / В.Г. Букин, А.И. Андреев, А.В. Букин // Вестник Астраханского государственного технического университета. Серия: Морская техника и технология. 2020. № 2. С. 92–99. DOI: 10.24143/2073-1574-2020-2-92-99.

Comments

No posts found

Write a review
Translate