Математическое моделирование системы жидкостного охлаждения микропроцессора
Математическое моделирование системы жидкостного охлаждения микропроцессора
Аннотация
Код статьи
S0544126924050056-1
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Андреев А. И.  
Аффилиация: Астраханский государственный технический
Страницы
397-406
Аннотация
В данной работе исследуются вопросы эффективности работы системы микропроцессор-система охлаждения и поддержания оптимальной температуры электронных компонентов. Для этого проведены эксперименты на существующей системе охлаждения микропроцессора с контролем всех основных параметров, в первую очередь таких как температура и расход теплоносителя, производительность и температура процессора. На основании полученных данных построена математическая модель, описывающая изменение мощности микропроцессора и позволяющая рассчитывать температуры и скорости теплоносителей, а также получать наиболее эффективные режимы для работы системы охлаждения. Полученные экспериментальные данные и математическая модель позволяет прогнозировать потребные мощности системы охлаждения и параметры работы микроэлектронных компонентов, что особенно важно при появлении новых поколений микропроцессоров, обладающих наиболее высокой производительностью. Полученные данные также позволяют рассчитывать параметры для существующих процессоров с целью наибольшего увеличения эффективности и надёжности их работы, что актуально и для других электронных устройств, в частности микроконтроллеров.
Ключевые слова
микропроцессор жидкостная система охлаждения математическая модель теплопроводимость коэффициент теплопередачи электроника системы охлаждения тепловыделение микропроцессора тепловой режим надёжность
Источник финансирования
Работа выполнена при финансовой поддержке Фонда содействия инновациям.
Классификатор
Получено
23.02.2025
Всего подписок
0
Всего просмотров
11
Оценка читателей
0.0 (0 голосов)
Цитировать   Скачать pdf

Библиография

1. Федорович Д.С. Деградация центральных процессоров в персональных компьютерах / Д. С. Федорович; науч. рук. С. В. Сизиков // Актуальные проблемы энергетики 2020 [Электронный ресурс]: материалы студенческой научно-технической конференции / сост. И. Н. Прокопеня. – Минск: БНТУ, 2020. – С. 278–284.

2. Srinivasan J. et al. The case for lifetime reliability-aware microprocessors // ACM SIGARCH Computer Architecture News. – 2004. – Т. 32. – № 2. – С. 276.

3. Moore G. BCramming more components onto integrated circuits,[Electronics, vol. 38, pp. 114–117, Apr. 19, 1965.

4. Mahajan R., Chiu C., Chrysler G. Cooling a microprocessor chip // Proceedings of the IEEE. – 2006. – Т. 94. – № 8. – С. 1476–1486.

5. Пехуров Н.В., Нацаренус П.А. Сравнение методов традиционного охлаждения с иммерсионным методом охлаждения систем // Вестник магистратуры. – 2019. – № 6–2. – С. 93.

6. Шелехов И.Ю., Коваленко А.Е., Залуцкий А.А. Оптимизация процесса использования вторичной тепловой энергии // The Scientific Heritage. – 2022. – № 82–1. – С. 68–70.

7. Немтырёва К.А. Системы охлаждения в ПК / Конкурс лучших студенческих работ – 2021. – С. 9–12.

8. Harun M.A., Sidik N.A.C. A review on development of liquid cooling system for central processing unit (CPU) // Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. – 2020. – Т. 78. – № 2. – С. 98–113.

9. Gullbrand J. et al. Liquid cooling of compute system // Journal of Electronic Packaging. – 2019. – Т. 141. – № 1. – С. 010802.

10. Halim N.F.C. and Sidik N.A.C. “Nanorefrigerants: A Review on Thermophysical Properties and Their Heat Transfer Performance.” Journal of Advanced Research in Applied Sciences and Engineering Technology 20, No. 1 (2020): 42–50. 11.

11. Halim N.F.C. and Sidik N.A.C. “Mixing Chamber for Preparation of Nanorefrigerant.” Journal of Advanced Research in Applied Sciences and Engineering Technology 21, No 1 (2020): 32–40.

12. Effect of Temperature on Power-Consumption with the i7–2600K /. 2011 https://forums.anandtech.com

13. Рыбаков А.В. Разработка системы охлаждения процессора персонального компьютера с использованием элемента Пельтье // Договора № 17–1–004502 от 19.10. 2017 г. между Фондом Президентских грантов и РМПО. Проект «Организация региональной сети и проведение бизнес-школ-выставок, направленных на развитие у школьников и студентов навыков научного предпринимательства, способствующих внедрению экономически перспективных разработок молодых инноваторов». – С. 12.

14. Лебакин А.И., Червенчук В.Д., Забудский А.И. К вопросу о практическом применении элементов Пельтье // Роль научно-исследовательской работы обучающихся в развитии АПК. – 2019. – С. 165–173.

15. Al-Rashed M.H. et al. Investigation on the CPU nanofluid cooling // Microelectronics Reliability. – 2016. – Т. 63. – С. 159–165.

16. Bahiraei M., Heshmatian S. Electronics cooling with nanofluids: A critical review // Energy Conversion and Management. – 2018. – Т. 172. – С. 438–456.

17. Qi C. et al. Experimental study on thermo-hydraulic performances of CPU cooled by nanofluids // Energy Conversion and Management. – 2017. – Т. 153. – С. 557–565.

18. Deng Y., Liu J. Optimization and evaluation of a high-performance liquid metal CPU cooling product // IEEE Transactions on Components, Packaging and Manufacturing Technology. – 2013. – Т. 3. – № 7. – С. 1171–1177.

19. Sarafraz M.M. et al. On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: A comparative study // Applied Thermal Engineering. – 2017. – Т. 112. – С. 1373–1381.

20. Habibishandiz M., Saghir M.Z. A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms // Thermal Science and Engineering Progress. 2022. Т. 30. С. 101267.

21. Fan F. et al. A novel thermal efficiency analysis on the thermo-hydraulic performance of nanofluids in an improved heat exchange system under adjustable magnetic field // Applied Thermal Engineering. 2020. Т. 179. С. 115688.

22. Букин В.Г. Гидравлическое сопротивление при кипении хладагентов в трубах горизонтальных и вертикальных испарителей судовых холодильных машин / В.Г. Букин, А.И. Андреев, А.В. Букин // Вестник Астраханского государственного технического университета. Серия: Морская техника и технология. 2020. № 2. С. 92–99. DOI: 10.24143/2073-1574-2020-2-92-99.

Комментарии

Сообщения не найдены

Написать отзыв
Перевести