Механизмы транспорта и полевой эмиссии электронов в 2D некристаллических углеродных гетероструктурах с квантовым барьером
Механизмы транспорта и полевой эмиссии электронов в 2D некристаллических углеродных гетероструктурах с квантовым барьером
Аннотация
Код статьи
S0544126924050043-1
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Красников Г. Я.  
Аффилиация: Акционерное общество «Научно-исследовательский институт молекулярной электроники»
Яфаров Р. К.
Аффилиация: Саратовский филиал Института радиотехники и электроники им. В. А. Котельникова РАН
Страницы
389-396
Аннотация
Исследовано влияние ширины квантового барьера в виде туннельно тонкого обедненного носителями заряда углеродного слоя в обогащенной некристаллической углеродной матрице на бездиссипативный транспорт и полевую эмиссию электронов. Показано, что нелинейности поперечных тока в гетероструктурах при статических низкополевых электрических воздействиях и параметров вольт-амперных характеристик полевой эмиссии электронов в сильных импульсных электрических полях микросекундной длительности определяются параметрами квантового барьера и реализацией условий резонансного туннелирования с участием различных нулевых уровней энергии размерного квантования.
Ключевые слова
углеродная гетероструктура размерное квантование электронный транспорт полевая эмиссия электронов
Классификатор
Получено
23.02.2025
Всего подписок
0
Всего просмотров
19
Оценка читателей
0.0 (0 голосов)
Цитировать   Скачать pdf

Библиография

1. Jin-Woo Han, Jae Sub Oh and M. Meyyappan. Vacuum nanoelectronics: Back to the future? — Gate insulated nanoscale vacuum channel transistor. Appl. Phys. Lett. 100, 213505 (2012). http://dx.doi.org/10.1063/1.4717751.

2. Fowler R.H., Nordheim L.W. Electronemission in intense electric fields // Proc. R. Soc. London. A. 1928. V. 119. P. 173–181.

3. Патент RU2 455 724 C1. Опубликовано: 10.07.2012. Бюл. № 19. Структура и способ изготовления интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий. Авторы: Красников Г.Я., Зайцев Н.А., Орлов С.Н., Хомяков И.А., Яфаров Р.К.

4. Marcus R.B., Ravi T.S., Gmitter T. et all. Formation of silicon tips with < 1 nm radius // Applied Physics Letters. 1990. Vol. 56, № 3. P. 236–238.

5. Фурсей Г.Н., Поляков М.А., Кантонистов А.А., и др. // ЖТФ. 2013. Т. 83. № 6. С. 71.

6. Panda K., Hyeok J.J., Park J.Y., et al. // Sci. Rep. 2007. № 7. P. 16325.

7. Sobaszek M., Siuzdak K., Ryl J., et al. // J. Phys. Chem. C. 2017. V. 121. № 38. P. 20821.

8. Яфаров Р.К., Сторублев А.В. Долговременная воспроизводимость эмиссионных характеристик алмазографитовых полевых источников электронов в нестационарных вакуумных условиях эксплуатации // Письма в ЖТФ. 2021. Т. 47, вып. 24. С. 17–19.

9. Блохинцев Д.И. Основы квантовой механики. М.: Наука, 1٩83.

10. Бонч-Бруевич В.Л, Калашников С.Г. Физика полупроводников. М.: Наука, 1٩77. 672 с.

11. Пул Ч. – мл., Оуэнс Ф. Нанотехнологии. Москва.: Техносфера, 2006. 336 с.

12. Драгунов В.П., Неизвестный И.Г., Гридчин В.А. Основы наноэлектроники. Москва. Физматкнига, 2006. 496 с.

13. Успехи наноинженерии: электроника, материалы, структуры. Под ред. Дж. Дэвиса, М. Томсона. Москва.: Техносфера, 2011. 491 с.

14. Яфаров Р.К. Физика СВЧ вакуумно-плазменных нанотехнологий. М.: Физматлит, 2009. 216 с.

15. Яфаров Р.К. // Письма в ЖТФ. 2019. Т. 45. № 9. С. 3.

Комментарии

Сообщения не найдены

Написать отзыв
Перевести