Electron cyclotron resonance plasma studies using the second cyclotron harmonic resonance
Table of contents
Share
QR
Metrics
Electron cyclotron resonance plasma studies using the second cyclotron harmonic resonance
Annotation
PII
S0544126924050013-1
Publication type
Article
Status
Published
Authors
А. V. Kovalchuk 
Affiliation: Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences
S. Y. Shapoval
Affiliation: Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences
Pages
355-361
Abstract
Microwave plasma (generation frequency 2.45 GHz, power 200–1000 W, pressure 0.2–10 mTorr) is excited and maintained in two main modes: (1) at continuous microwave power and low magnetic fields (B = 300–450 G) under a superdense (Ne > Ncr = 7.4 ´ 1010 cm−3) plasma and low plasma density (Ne < Ncr); and (2) in high magnetic fields (B = 750–1000 G), close to the ECR condition. The peculiarities of plasma generation under the ECR condition and at the second harmonic of cyclotron resonance are studied.
Keywords
СВЧ-излучение ЭЦР-плазма вторая циклотронная гармоника КВЧ интерферометрия плазменный зонд
Acknowledgment
The work was carried out within the framework of the state assignment of the Institute of Theoretical and Mathematical Mechanics of the Russian Academy of Sciences No. 075-00296-24-01.
Received
23.02.2025
Number of purchasers
0
Views
19
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Celona L., Gammino S., Ciavola G., Maimone F., Mascali D. Microwave to plasma coupling in electron cyclotron resonance and microwave ion sources (invited). Rev. Sc. Instrum., 81 (2), 02A333 (2010). DOI: 10.1063/1.3265366

2. Shapoval S., Bulkin P., Chumakov A., Khudobin S., Maximov I., Mikhailov G. Compact ECR-source of ions and radicals for semiconductor surface treatment. Vacuum, 43 (3), 195 (1992). https://doi.org/10.1016/0042-207X (92)90260-4

3. Polushkin E.A., Nefed’ev S.V., Koval’chuk A.V. et al. Hydrogen Plasma under Conditions of Electron-Cyclotron Resonance in Microelectronics Technology. Russ Microelectron 52, 195–197 (2023). https://doi.org/10.1134/S1063739723700373

4. Shapoval S., Gurtovoi V., Kovalchuk A., Lester F.E., Vertjachih A., Gaquiere C., Theron D. "Improvement of conductivity and breakdown characteristics of AlGaN/GaN HEMT structures in passivation experiments", Proc. SPIE 5023, 10th International Symposium on Nanostructures: Physics and Technology, (11 June 2003). https://doi.org/10.1117/12.511539

5. Datlov J., Teichmann J., Zacek F. Regimes of plasma acceleration by inhomogenous high frequency and magnetostatic field in a cavity resonator. Phys. Letters, 17 (1), 30 (1965). https://doi.org/10.1016/0031-9163 (65)90634-7

6. Celona L., Gammino S., Maimone F., Mascali D., Gambino N. , Miracoli R., and Ciavola G. Observations of resonant modes formation in microwave generated magnetized plasmas. Eur. Phys. J. D, 61(1), 107 (2011). https://doi.org/10.1140/¬epjd/e2010-00244-y

7. Skalyga V.A., Golubev S.V., Izotov I.V., Lapin R.L., Razin S.V., Sidorov A.V., and Shaposhnikov R. A. High-current pulsed ECR ion sources. Prikl. Fiz., 1, 17 (2019). https://applphys.orion-ir.ru/appl-19/19-1/PF-19-1-17.pdf

8. Tulle P.A. Off-resonance microwave-created plasmas. Plasma Phys., 15 (10), 971 (1973). DOI: 10.1088/0032-1028/15/10/003

9. Morito M., and Ken’ichi O. Ion extraction from microwave plasma excited by ordinary and extraordinary waves and applications to the sputtering deposition. J . Vac. Sci. Technol. A, 9, 691 (1991). https://doi.org/10.1116/1.577345

10. Kovalchuk A., Beshkov G., Shapoval S. Dehydrogenation of Low-Temperature ECR-Plasma Silicon Nitride Films under Rapid Thermal Annealing. J. Res. Phys., 31 (1), 37–46 (2007). https://www.researchgate.net/publication/277125029_Dehydrogenation_of_low-temperature_ECR-plasma_silicon_nitride-_films_under_rapid_thermal_annealing

11. Райзер Ю.П. Физика газового разряда, Глава 8, § 5, пункт 5.3., 199 («Наука», Физматлит 1992) ISBN: 5-02-014615-3. https://studizba.com/files/show/djvu/2107-1-rayzer-yu-p--fizika-gazovogo-razryada.html (in Russian)

12. Райзер Ю.П. Физика газового разряда, Глава 15, § 4, пункт 4.3., 479 («Наука», Физматлит 1992) ISBN: 5-02-014615-3. https://studizba.com/files/show/djvu/2107-1-ray¬zer-yu-p--fizika-gazovogo-razryada.html (in Russian)

13. Shapoval S.Y., Petrashov V.T., Popov O.A, Yoder M.D., Maciel P.D., and Lok C.K.C. Electron cyclotron resonance plasma chemical vapor deposition of large area uniform silicon nitride films. J . Vac. Sci. Technol. A, 9 (6), 3071 (1991). DOI: 10.1116/1.577175

14. Salahshoor M., Aslaninejad M. Resonance surface, microwave power absorption, and plasma density distribution in an electron cyclotron resonance ion source. Phys. Rev. Accel. Beams, 22 (4), 043402 (2019). DOI: 10.1103/PhysRevAccelBeams.22.043402

15. Roychowdhury P., Mishra L., Kewlani H., Gharat S. Hydrogen Plasma Characterization at Low Pressure in 2.45 GHz Electron Cyclotron Resonance Proton Ion Source. IEEE Transactions on Plasma Science, 45 (4), 665 (2017). DOI: 10.1109/TPS.2017.2679758

16. Gallo C.S., Galata A., Mascali D., Torrisi G. A possible optimization of electron cyclotron resonance ion sources plasma chambers. 23th Int. Workshop on ECR Ion Sources, 67 (Catania, Italy, ECRIS 2018). https://accelconf.web.cern.ch/ecris2018/papers/tub3.pdf

17. Qian Y. Jin, Yu G. Liu, Yang Z., Qi Wu, Yao J. Zhai and Liang T. Sun. RF and Microwave Ion Sources Study at Institute of Modern Physics. Plasma, 4 (2), 332 (2021). https://doi.org/10.3390/plasma4020022

18. Mauro G.S., Torrisi G., Leonardi O., Pidatella A., Sorbello G., and Mascali D. Design and Analysis of Slotted Waveguide Antenna Radiating in a “Plasma-Shaped” Cavity of an ECR Ion Source. MDPI Telecom, 2 (1), 42 (2021). https://doi.org/10.3390/telecom-2010004

19. Tsybin O.Yu., Makarov S.B., Dyubo D.B., Kuleshov Yu.V., Goncharov P.S., Martynov V.V., Shunevich N.A. An electrically powered ion accelerator with contact ionization for perspective electrically powered thrusters. St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 13 (2), 99 (2020). https://physmath.spbstu.ru/en/article/2020.48.08/

20. Lax B., Allis W.P. and Brown S.C. The effect of magnetic field on the breakdown of gases at microwave frequencies. J. Appl. Phys., 21, 1297 (1950). DOI: 10.1063/1.1699594

21. Popov O.A. Characteristics of electron cyclotron resonance plasma sources. J. Vac. Sci. Technol. A, 7 (3), 894 (1989). https://doi.org/10.1116/1.575816

22. Shapoval S.Y., Petrashov V.T., Popov O.A., Yoder M.D.Jr., Maciel P.D., and Lok C.K.C. Electron cyclotron resonance plasma chemical vapor deposition of large area uniform silicon nitride films. J. Vac. Sci. Technol. A, 9(6), 3071 (1991). https://doi.org/10.1116/1.577175

23. Ginzburg V.L. The Propagation of Electromagnetic Waves in Plasmas 2nd ed. (Pergamon Press, Oxford, 1970) ISBN: 0080155693; Russian original:, V. L. Ginzburg. The Propagation of Electromagnetic Waves in Plasmas 2nd ed. (Nauka, Moscow, 1967). https://www.studmed.ru/ginzburg-vl-rasprostranenie-elektromagnitnyh-voln-v-plazme_729023ed3e1.html

24. Popov O.A., Shapoval S.Y. and Yoder M.D.Jr. 2.45 GHz microwave plasmas at magnetic fields below ECR. Plasma Sources Sci. Technol., 1 (1), 7 (1992). DOI: 10.1088/0963-0252/1/1/002

25. Popov O.A., Shapoval S.Y. and Yoder M.D., and Chumakov A.A. Electron cyclotron resonance plasma source for metalorganic chemical vapor deposition of silicon oxide films. J. Vac. Sci. Technol. A, 12(2), 300 (1994). https://doi.org/10.1116/1.578872

26. Stix T.H. The Theory of Plasma Waves (McGraw-Hill, New York, 1962) ASIN: B0006AY0IW. https://babel.hathitrust.-org/cgi/pt?id=uc1.b3754096&view=1up&seq=9

Comments

No posts found

Write a review
Translate