Комплексное исследование неравномерности свойств тонкопленочного катода LiCoO2, изготовленного методом ВЧ-магнетронного распыления
Комплексное исследование неравномерности свойств тонкопленочного катода LiCoO2, изготовленного методом ВЧ-магнетронного распыления
Аннотация
Код статьи
S0544126924030019-1
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Рудый А. С.  
Аффилиация: Ярославский филиал Физико-технологического института им. К.А. Валиева РАН
Курбатов С. В.
Аффилиация: Ярославский филиал Физико-технологического института им. К.А. Валиева РАН
Страницы
189-205
Аннотация
Исследовано влияние неоднородности катодного слоя LiCoO2, нанесенного методом магнетронного распыления, на емкость твердотельных тонкопленочных литий-ионных аккумуляторов (ТТЛИА). Показано, что неоднородность пленки соответствует распределению плотности плазмы магнетрона и угловому распределению распыляемых частиц. Исследована зависимость емкости ТТЛИА на основе LiCoO2 от расстояния от центра подложки. Установлено, что максимальная емкость соответствует плотной части тороидальной области плазмы. Показано, что основными причинами более низкой емкости аккумуляторов, сформированных в центральной части подложки и на периферии, являются побочные фазы кобальтита лития и меньшая толщина катодного слоя.
Ключевые слова
ВЧ магнетронное распыление неоднородность катодного слоя разброс удельной емкости тонкопленочный литий-ионный аккумулятор
Источник финансирования
Работа выполнена в рамках Государственного задания Ярославского филиала Физико-технологического института им. К.А. Валиева РАН Минобрнауки России по теме № FFNN-2022-0017 на оборудовании Центра коллективного пользования “Диагностика микро- и наноструктур”.
Классификатор
Получено
27.10.2024
Всего подписок
0
Всего просмотров
14
Оценка читателей
0.0 (0 голосов)
Цитировать   Скачать pdf

Библиография

1. Bates J.B., Dudney N.J., Gruzalski G.R., Zuhr R.A., Choudhury A., Luck C.F., Robertson J.D. Electrical properties of amorphous lithium electrolyte thin films // Solid State Ionics. 1992. V. 53—56. P. 647—654. https://doi.org/10.1016/0167-2738 (92)90442-R

2. Bates J.B., Dudney N., Gruzalski G., Zuhr R., Choudhury A., Luck C., Robertson J. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries // J. Power Sources. 1993. V. 43. № 1—3. P. 103—110. https://doi.org/10.1016/0378-7753 (93)80106-Y

3. Bates J.B., Gruzalski G.R., Dudney N.J., Luck C.F., Yu X. Rechargeable thin-film lithium batteries // Solid State Ionics. 1994. V. 70. P. 619—628. https://doi.org/10.1016/0167-2738 (94)90383-2

4. Bates J.B., Dudney N.J., Lubben D.C., Gruzalski G.R., Kwak B.S., Yu X., Zuhr R.A. Thin-film rechargeable lithium batteries // J. Power Sources. 1995. V. 54. № 1. P. 58—62. https://doi.org/10.1016/0378-7753 (94)02040-A

5. Yu X., Bates J.B., Jellison-Jr. G.E., Hart F.X. A stable thin‐film lithium electrolyte: lithium phosphorus oxynitride // Journal of the electrochemical society. 1997. V. 144. № 2. P. 524. DOI: 10.1149/1.1837443.

6. Yu X., Bates J.B., Jellison G.E. Characterization of Lithium Phosphorous Oxynitride Thin Films, Proceedings of the Symposium on Thin Film Solid Ionic Devices and Materials. 1995. V. 95—22. P. 23—30.

7. Bates J.B., Dudney N.J., Luck C.F., Sales B.C., Zuhr R.A., Robertson J. D. Deposition and characterization of Li2O—SiO2—P2O5 thin films //Journal of the American Ceramic Society. 1993. V. 76. № 4. P. 929—943. https://doi.org/10.1111/j.1151-2916.1993.tb05317.x

8. Bubulinca C., Kazantseva N., Pechancova V., Joseph N., Fei H., Venher M., Ivanichenko A., Saha P. Development of All-Solid-State Li-Ion Batteries: From Key Technical Areas to Commercial Use // Batteries. 2023. V. 9. № 3. P. 157. https://doi.org/10.3390/batteries9030157

9. Wu B., Chen C., Danilov D.L., Eichel R.-A., Notten P.H.L. All-solid-state thin film Li-ion batteries: New challenges, new materials, and new designs //Batteries. 2023. V. 9. № 3. P. 186. https://doi.org/10.3390/batteries9030186

10. Ma Y., Li L., Qian J., Qu W., Luo R., Wu F., Chen R. Materials and structure engineering by magnetron sputtering for advanced lithium batteries // Energy Storage Materials. 2021. V. 39. P. 203—224. https://doi.org/10.1016/j.ensm.2021.04.012

11. Oukassi S., Bazin A., Secouard C., Chevalier I., Poncet S., Poulet S., Boissel J-M., Geffraye F., Brun J., Salot R. Millimeter scale thin film batteries for integrated high energy density storage // 2019 IEEE International Electron Devices Meeting (IEDM). IEEE. 2019. P. 26.1. 1-26.

12. Koo M., Park K.-I., Lee S.H., Suh M., Jeon D.Y., Choi J.W., Kang K., Lee K.J. Bendable inorganic thin-film battery for fully flexible electronic systems // Nano letters. 2012. V. 12. № 9. P. 4810—4816. https://doi.org/10.1021/nl302254v

13. Горбунов Н.В., Колесников А.Г., Крюков Ю.А., Смолянин Т.А. Прогнозирование зоны эрозии планарного магнетрона // Надежность и качество сложных систем. 2020. № 1 (29). С. 57—66. DOI: 10.21685/2307-4205-2020-1-7.

14. Swann S. Film thickness distribution in magnetron sputtering // Vacuum. 1988. V. 38. № 8—10. P. 791—794. https://doi.org/10.1016/0042-207X (88)90465-4

15. Soloviev A.A., Sochugov N.S., Oskomov K.V., Kovsharov N.F. Film thickness distribution in magnetron sputtering system with the round cathode // Izv. vuzov. Physics 2006. V. 8. Pp. 491—493.

16. Zhang X.B., Pei Z.L., Gong J., Sun C. Investigation on the electrical properties and inhomogeneous distribution of ZnO: Al thin films prepared by dc magnetron sputtering at low deposition temperature // Journal of applied physics. 2007. V. 101. P. 014910. https://doi: 10.1063/1.2407265

17. Tadjine R., Alim M.M., Kechouane M. The erosion groove effects on RF planar magnetron sputtering // Surface and Coatings Technology. 2017. V. 309. P. 573—578. https://doi.org/10.1016/j.surfcoat.2016.12.009

18. Mientus R., Weise M., Seeger S., Heller R., Ellmer K. Electrical and optical properties of amorphous SnO2: Ta films, prepared by DC and RF magnetron sputtering: A systematic study of the influence of the type of the reactive gas // Coatings. 2020. V. 10. № 3. P. 204. https://doi:10.3390/coatings10030204

19. Nomoto J., Makino H., Inaba K., Kobayashi S., Yamamoto T. Effects of the erosion zone of magnetron sputtering targets on the spatial distribution of structural and electrical properties of transparent conductive Al-doped ZnO polycrystalline films // J. Appl. Phys. 2018. V. 124. № 6. P. 065304. https://doi: 10.1063/1.5038162

20. Minami T., Oda J., Nomoto J., Miyata T. Effect of target properties on transparent conducting impurity-doped ZnO thin films deposited by DC magnetron sputtering // Thin Solid Films. 2010. V. 519. № 1. P. 385—390. https://doi:10.1016/j.tsf.2010.08.007

21. Murakami Y., Shingyoji T. Compositional difference between films and targets in sputtering of refractory metal silicides // J. Vac. Sci. Technol. 1990. V. 8. № 2. P. 851—854. https://doi: 10.1116/1.576929

22. Sato H., Ikeda N., Tawara H., Sato M. Investigation of Composition Uniformity of MoSix Sputtering Films Based on Measurement of Angular-distribution of Sputtered Atoms // Thin Solid Films. 1993. V. 236. № 1—2. P. 27—31. https://doi.org/10.1016/0040-6090 (93)90245-K

23. Broadway D. M., Platonov Y.Y., Gomez L.A. Achieving desired thickness gradients on flat and curved substrates // X-Ray Optics, Instruments, and Missions II. SPIE. 1999. V. 3766. P. 262—274. https://doi.org/10.1117/12.363643

24. Wang B., Fu X., Song S., Chu H.O., Gibson D., Li C., Shi Y., Wu Z. Simulation and optimization of film thickness uniformity in physical vapor deposition // Coatings. 2018. V. 8. №. 9. P. 325. https://doi:10.3390/coatings8090325

25. Мартыненко Ю. В., Рогов А. В., Шульга В. И. Угловое распределение атомов при магнетронном распылении поликристаллических мишеней // ЖТФ. 2012. T. 82. № 4. C. 13—18.

26. Whitacre J.F., West W.C., Ratnakumar B.V. The influence of target history and deposition geometry on RF magnetron sputtered LiCoO2 thin films // Journal of power sources. 2001. V. 103. № 1. P. 134—139. https://doi.org/10.1016/S0378-7753 (01)00849-7

27. Rudy A.S., Mironenko A.A., Naumov V.V., Fedorov I.S., Skundin A.M., Tortseva Y.S. Thin-Film Solid State Lithium-Ion Batteries of the LiCoO2/LiPON/Si@O@Al System // Russian Microelectronics. 2021. V. 50. № 5. P. 333—338. https://doi.org/10.1134/S106373972105005X

28. Neudecker B.J., Dudney N.J., Bates J.B. “Lithium‐Free” thin‐film battery with in situ plated Li anode //Journal of the Electrochemical Society. 2000. V. 147. № 2. P. 517. DOI: 10.1149/1.1393226.

29. Bates J.B., Dudney N.J., Neudecker B.J., Hart F.X., Jun H.P., Hackney S.A. Preferred orientation of polycrystalline LiCoO2 films // J. Electrochem. Soc. 2000. V. 147. № 1. P. 59. DOI: 10.1149/1.1393157.

30. Yoon M., Lee S., Lee D., Kim J., Moon J. All-solid-state thin film battery based on well-aligned slanted LiCoO2 nanowires fabricated by glancing angle deposition //Applied Surface Science. 2017. V. 412. P. 537—544. https://doi.org/10.1016/j.apsusc.2017.03.268

31. Распыление твердых тел ионной бомбардировкой: Физ. распыление одноэлементных твердых тел. Пер. с англ. /Под ред. Р. Бериша. М.: Мир, 1984. 336 с.

32. Данилин Б.С., Сырчин В.К. Магнетронные распылительные системы / Б. С. Данилин, В. К. Сырчин. М.: Радио и связь, 1982. 72 с.

33. Shi Y., Huang Q., Qi R., Shen Z., Zhang Z., Wang Z. Theoretical and experimental study of particle distribution from magnetron sputtering with masks for accurate thickness profile control // Coatings. 2020. V. 10. № 4. P. 357. https://doi:10.3390/coatings10040357

34. Yamamura Y., Takiguchi T., Ishida M. Energy and angular distributions of sputtered atoms at normal incidence // Radiation effects and defects in solids. 1991. V. 118. № 3. P. 237—261. DOI: 10.1080/10420159108221362.

35. Olson R.R., Wehner G.K. Composition variations as a function of ejection angle in sputtering of alloys // J. Vac. Sci. Technol. 1977. V. 14. № 1. P. 319—321. https://doi: 10.1116/1.569198

36. Olson R.R., King M.E., Wehner G.K. Mass effects on angular distribution of sputtered atoms //Journal of Applied Physics. 1979. V. 50. № 5. P. 3677—3683. https://doi: 10.1063/1.326321

37. Ковба Л.М., Трунов В.К. Рентгенофазовый анализ / 2-е изд. доп. и перераб. М.: МГУ, 1976. 232 с.

38. Jung K.T., Cho G.-B., Kim K.-W., Nam T.-H., Jeong H. M., Huh S.-C., Chung H.-S., Noh J.-P. Influence of the substrate texture on the structural and electrochemical properties of sputtered LiCoO2 thin films // Thin solid films. 2013. V. 546. P. 414—417. https://doi.org/10.1016/j.tsf.2013.05.135

39. Liao C. L., Lee Y. H., Fung K. Z. The film growth and electrochemical properties of rf-sputtered LiCoO2 thin films // Journal of alloys and compounds. 2007. V. 436. № 1—2. P. 303—308. https://doi:10.1016/j.jallcom.2006.07.033

40. Prachařová J., Přidal J., Bludská J., Jakubec I., Vorlı́ček V., Málková Z., Makris T. D., Giorgi R., Jastrabı́k L. LiCoO2 thin-film cathodes grown by RF sputtering // Journal of power sources. 2002. V. 108. № 1—2. P. 204—212. https://doi.org/10.1016/S0378-7753 (02)00018-6

41. Xie J., Imanishi N., Zhang T., Hirano A., Takeda Y., Yamamoto O. Li-ion transport in all-solid-state lithium batteries with LiCoO2 using NASICON-type glass ceramic electrolytes // Journal of Power Sources. 2009. V. 189. № 1. P. 365—370. https://doi:10.1016/j.jpowsour.2008.08.015

42. Whitacre J.F., West W.C., Brandon E., Ratnakumar B.V. Crystallographically oriented thin-film nanocrystalline cathode layers prepared without exceeding 300 °C // J. Electrochem. Soc. 2001. V. 148. № 10. P. A1078. DOI: 10.1149/1.1400119.

43. Park H.Y., Lee S.R., Lee Y.J., Cho B.W., Cho W.I. Bias sputtering and characterization of LiCoO2 thin film cathodes for thin film microbattery // Materials Chemistry and Physics. 2005. V. 93. № 1. P. 70—78.

44. Kuwata N., Kumar R., Toribami K., Suzuki T., Hattori T., Kawamura J. Thin film lithium ion batteries prepared only by pulsed laser deposition // Solid state ionics. 2006. V. 177. № 26—32. P. 2827—2832. https://doi.org/10.1016/j.ssi.2006.07.023

45. Jeon S.W., Lim J.-K., Lim S.-H., Lee S.-M. As-deposited LiCoO2 thin film cathodes prepared by rf magnetron sputtering // Electrochimica Acta. 2005. V. 51. № 2. P. 268—273. DOI: 10.1016/j.electacta.2005.04.035.

46. Inaba M., Iriyama Y., Ogumi Z., Todzuka Y., Tasaka A. Raman study of layered rock‐salt LiCoO2 and its electrochemical lithium deintercalation // J. Raman Spectrosc. 1997. V. 28. № 8. P. 613—617.

47. Tintignac S., Baddour-Hadjean R., Pereira-Ramos J.-P., Salot R. High performance sputtered LiCoO2 thin films obtained at a moderate annealing treatment combined to a bias effect // Electrochimica acta. 2012. V. 60. P. 121—129. https://doi:10.1016/j.electacta.2011.11.033

48. Julien С., Mauger А., Vijh А., Zaghib K. Lithium batteries: science and technology. Springer, 2008.

49. Thackeray M.M., Baker S.D. and Adendorff K.T. Lithium insertion into Co3O4: a preliminary investigation //Solid State Ionics. 1985. V. 17. № 2. P. 175—181. https://doi.org/10.1016/0167-2738 (85)90069-4

Комментарии

Сообщения не найдены

Написать отзыв
Перевести