Structural features and electrical properties of si(al) thermal migration channels for high-voltage photovoltaic converters
Table of contents
Share
QR
Metrics
Structural features and electrical properties of si(al) thermal migration channels for high-voltage photovoltaic converters
Annotation
PII
S0544126924020018-1
Publication type
Article
Status
Published
Authors
A. A. Lomov 
Affiliation: Platov South Russian State Polytechnic Institute (NPI)
Pages
119-131
Abstract
The results of a study of the structural features and electrical properties of Si(Al) through thermomigration p-channels in a silicon wafer are presented. Structural studies were performed using X-ray methods of projection topography, diffraction reflection curves and scanning electron microscopy. It is shown that the channel-matrix interface is coherent without the formation of mismatch dislocations. The possibility of using an array of thermomigration p-channels of 15 elements to form a monolithic photovoltaic solar module in a Si(111) silicon wafer based on p-channels with a width of 100 microns with walls in the plane is shown. The monolithic solar module has a conversion efficiency of 13.1%, an idle voltage of 8.5 V and a short-circuit current density of 33 mA/cm².
Keywords
термомиграция p—n-переход кремний алюминий рентгеновская топография дифракция кривая качания U—I—R-свойства высоковольтный солнечный модуль
Acknowledgment
The work was supported by the Ministry of Education and Science of the Russian Federation within the framework of the state assignment to the South-Russian State Polytechnical University (NPI) named after M.I. Platov on the topic FENN-2023-0005 and with partial support of the State assignment to the K.A. Valiev Institute of Physics and Technology of the Russian Academy of Sciences on the topic No. FFNN-2022-0019. Part of the experimental work was carried out with the instrumental support of the Center for Shared Use “Research of Nanostructured, Carbon and Superhard Materials” of the Federal State Budgetary Scientific Institution TISNCM.
Received
31.08.2024
Number of purchasers
0
Views
74
Readers community rating
0.0 (0 votes)
Cite   Download pdf Download JATS

References

1. Markvart T., Castafier L. Practical Handbook of Photovoltaics: Fundamentals and Applications. Oxford — New York — Tokyo: Elsevier Science Ltd., 2003.

2. Philipps S.P. et al. Present Status in the Development of III — V Multi-Junction Solar Cells. In: Cristóbal López A., Martí Vega A., Luque López A. (eds). Next Generation of Photovoltaics. Springer Series in Optical Sciences. 2012. V. 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23369-2_1

3. Da X., Chen C., Deng Y., Wood A., Yang G., Fei C., Huang J. Pathways to High Efficiency Perovskite Monolithic Solar Modules // PRX ENERGY1, 013004 (2022). DOI: 10.1103/PRXEnergy.1.013004.

4. Ryan C. Chiechi, Remco W.A. Havenith, Jan C. Hummelen, L. Jan Anton Koster, Maria A. Loi. Modern Plastic Solar Cells: materials, mechanisms and modeling // Materials Today. 2013. V. 16. P. 281.

5. Ryan M. France, John F. Geisz, Tao Song, Waldo Olavarria, Michelle Young, Alan Kibbler, Myles A. Steiner. Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices // Joule 6 (5), 1121–1135, May 18, 2022. 1123. doi.org/10.1016/j.joule.2022.04.024

6. Anthony T.R., Cline H.E. Lamellar devices processed by thermomigration, J. Appl. Phys. 1977. V. 48. P. 3943–3949.

7. Pfann W.G. Zone Melting. 2nd Ed. New York: Wiley, 1963.

8. Lozovskii V.N., Lunin L.S., and Popov V.P. Temperature-Gradient Zone Recrystallization of Semiconductor Materials. M.: Metallurgiya, 1987.

9. Lozovskii V.N., Udaynskaya A.I. Investigation of the Mechanism of Silicon Crystallization from an Aluminum-Silicon Melt by Temperature Gradient Zone Melting // Sov. Phys. Crystallography. 1968. V. 13. № 3. P. 565–566.

10. Lozovskii V.N., Popov V.P. On the stability of the growth front during crystallization by the moving solvent method // Sov. Phys. Crystallography. 1970. V. 15. № 1. P. 149–154.

11. Cline H.E., Anthony T.R. Thermomigration of aluminum-rich liquid wires through silicon // J. Appl. Phys. 1976. V. 47. № 6. P. 2332–2336.

12. Buchin E.Y., Denisenko Y.I., Simakin S.G. The structure of thermomigration channels in silicon // Technical Physics Letters. 2004. V. 30. № 3. P. 205–207.

13. Norskog A.C., Warner Jr.R.M. A horizontal monolithic series-array solar battery employing thermomigration // J. Appl. Phys. 1981. V. 52. № 3. P. 1552–1554.

14. Lozovskii V.N., Lomov A.A., Lunin L.S., Seredin B.M., Chesnokov Yu.M. Crystal Defects in Solar Cells Produced by the Method of Thermomigration // Semiconductors. 2017. V. 51. № 3. P. 285–289.

15. Eslamian M., Saghir M.Z. Thermodiffusion Applications in MEMS, NEMS and Solar Cell Fabrication by Thermal Metal Doping of Semiconductors // FDMP. 2012. V. 8. № 4. P. 353–380.

16. Реньян В.Р. Технология полупроводникового кремния. М.: Металлургия, 1969.

17. Jasurbek G., Rayimjon A., Bobur R. Effect of the Local Mechanical Stress on Properties of Silicon Solar Cell // Journal of Mechanical Engineering Research and Developments. 2021. V. 44. № 9. P. 125–133.

18. Lomov A.A., Punegov V.I., and Seredin B.M. Laue X-ray diffraction studies of the structural perfection of Al-doped thermomigration channels in silicon // J. Appl. Cryst. 2021. V. 54. Р. 588–596.

19. Lomov A.A., Punegov V.I., Belov A.Yu., Seredin B.M. High resolution X-ray Bragg diffraction in Al-doped thermomigration channels in silicon // J. Appl. Cryst. 2022. V. 55(3). Р. 558–568. doi.org/10.1107/S1600576722004319

20. Morillon B. Etude de la thermomigration de l’aluminium dans le silicium pour la réalisation industrielle de murs d’isolation dans les composants de puissance bidirectionnels. Micro and nanotechnologies // Microelectronics. 2002. Р. 222.

21. Середин Б.М., Ломов А.А., Заиченко А.Н., Гаврус И.В., Пащенко А.С., Малибашев А.В., Рубан Л.В. Электрические свойства кремниевых высоковольтных фотопреобразователей на основе сквозных термомиграционных каналов // Физика. СПб.: Политех-Пресс, 2021. С. 456–458.

22. Середин Б.М., Попов В.П., Гаврус И.В., Заиченко А.Н. Применение локальной перекристаллизации кремния алюминием в фотовольтаике // Мокеровские чтения. М.: НИЯУ МИФИ, 2023. С. 146–147.

23. Лозовский В.Н., Попов В.П., Даровский Н.И. Стартовая нестабильность линейных и точечных зон при зонной плавке с градиентом температуры. Кристаллизация и свойства кристаллов: сборник трудов. Новочеркасск, 1970. Т. 208. С. 39–43.

24. Полухин А.С. Термомиграция неориентированных линейных зон в кремниевых пластинах (100) для производства чипов силовых полупроводниковых приборов // Компоненты и технологии. 2008. № 11. С. 97–100.

25. Takeshi Yoshikawaz and Kazuki Morita. Solid Solubilities and Thermodynamic Properties of Aluminum in Solid Silicon // Journal of The Electrochemical Society. 150 ~8! G465-G468 ~2003! 0013-4651/2003/150~8!/G465/4/

26. Seredin B.M., Kuznetsov V.V., Lomov A.A., Zaichenko A.N., Martyushov S.Yu. Precision silicon doping with acceptors by temperature gradient zone melting // J. Phys: Conf. Series. 2019. P. 39–46.

27. Bowen D.K. & Tanner B.K. High Resolution X-ray Diffractometry and Topography. London, Bristol: Taylor & Francis, 1998.

28. Sah C.T., Noyce R.N., Shockley W. Carrier Generation and Recombination in p—n Junction and p—n Junction Characteristics // Proceedings of the IRE. 1957. V. 45. № 9. P. 1228–1243.

29. Sze S.M., Kwok K.Nc. Physics of semiconductor devices // A. John Wiley & Sons. Inc. Publ., 2007.

30. Ломов А.А., Середин Б.М., Мартюшов C.Ю., Заиченко А.Н., Шульпина И.Л. Формирование и структура термомиграционных кремниевых каналов, легированных Ga // Журнал технической физики. 2021. Т. 91. № 3. С. 467–474.

Comments

No posts found

Write a review
Translate