Features of Electroforming and Functioning of Memristors Based on Open TiN–SiO<sub>2</sub>–Mo Sandwich Structures
Table of contents
Share
QR
Metrics
Features of Electroforming and Functioning of Memristors Based on Open TiN–SiO<sub>2</sub>–Mo Sandwich Structures
Annotation
PII
S0544126924010086-1
Publication type
Article
Status
Published
Authors
E. S. Gorlachev 
Affiliation: Yaroslavl Branch of the Valiev Institute of Physics and Technology of the Russian Academy of Sciences
Pages
75-84
Abstract
The processes of electroforming and functioning in a vacuum of memristors (elements of non-volatile electrically reprogrammable memory) based on open TiN–SiO2–Mo sandwich structures were studied. The experimental results showed that, firstly, these structures with a top molybdenum electrode are characterized by higher initial conductivity values than the previously studied TiN–SiO2–W structures. Secondly, for structures with Mo it turned out to be possible to reduce the electroforming voltage to values of 6–8 V, which is almost two times lower than for structures with W under the same experimental conditions. This increases the reliability of the functioning of memory elements, minimizing the likelihood of breakdown. Experiments with preliminary thermal annealing of open TiN–SiO2–Mo sandwich structures in an oil-free vacuum showed that the structures retained high initial conductivity, but did not undergo full electroforming. Based on the results obtained, a mechanism for the appearance of high built-in conductivity for open TiN–SiO2–Mo sandwich structures was proposed, which is based on the transfer of molybdenum atoms through the etchant to the open edge of SiO2 during its fabrication.
Keywords
мемристор элемент памяти открытая сэндвич-структура молибден электроформовка вакуум термический отжиг
Acknowledgment
The work was carried out within the framework of the State Assignment of the Federal State Budgetary Institution of Science of the K.A. Valiev Institute of Physics and Technology of the Russian Academy of Sciences of the Ministry of Education and Science of the Russian Federation on the theme № FFNN-2022-0018 "Fundamental and exploratory research in the field of creation of device structures and active media for information storage based on elements of spintronics and memristor effect"
Received
16.07.2024
Number of purchasers
0
Views
18
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Chua L. Resistance switching memories are memristors // Appl. Phys. A. 2011. V. 102. P. 765–783.

2. Yang J.J., Strukov D. B., Stewart D.R. Memristive devices for computing // Nat. Nanotechnol. 2013. V. 8. P. 13–24.

3. Abunahla H., Mohammad B. Memristor Device Overview. In: Memristor Technology: Synthesis and Modeling for Sensing and Security Applications. Analog Circuits and Signal Processing. Cham: Springer, 2018. 106 p.

4. Fadeev A.V., Rudenko K.V. To the issue of the memristor’s HRS and LRS states degradation and data retention time // Russ. Microelectron. 2021. V. 50. No. 5. P. 311–325.

5. Sung C., Hwang H., Yoo I.K. Perspective: A review on memristive hardware for neuromorphic computation // J. Appl. Phys. 2018. V. 124. P. 151903-1-13.

6. Ielmini D., Wang Z., Liu Y. Brain-inspired computing via memory device physics // APL Mater. 2021. V. 9. P. 050702-1-21.

7. Huang Y., Kiani F., Ye F., Xia Q. From memristive devices to neuromorphic systems // Appl. Phys. Lett. 2023. V. 122. P. 110501-1-8.

8. Kumar D., Aluguri R., Chand U., Tseng T.Y. Metal oxide resistive switching memory: Materials, properties and switching mechanisms // Ceram. Int. 2017. V. 43. P. S547—S556.

9. Prasad O.K., Chandrasekaran S., Chung C.-H., Chang K.-M., Simanjuntak F.M. Annealing induced cation diffusion in TaOx-based memristor and its compatibility for back-end-of-line post-processing // Appl. Phys. Lett. 2022. V. 121. P. 233505-1-6.

10. Koroleva A.A., Kuzmichev D.S., Kozodaev M.G., Zabrosaev I.V., Korostylev E.V., Markeev A.M. CMOS-compatible self-aligned 3D memristive elements for reservoir computing systems // Appl. Phys. Lett. 2023. V. 122. P. 022905-1-7.

11. Isaev A.G., Permyakova O.O., Rogozhin A.E. Oxide memristors for ReRAM: Approaches, characteristics, and structures // Russ. Microelectron. 2023. V. 52. No. 2. P. 74–98.

12. Liu P., Luo H., Yin X., Wang X., He X., Zhu J., Xue H., Mao W., Pu Y. A memristor based on two-dimensional MoSe2/MoS2 heterojunction for synaptic device application // Appl. Phys. Lett. 2022. V. 121. P. 233501-1-7.

13. Wang Y., Chen Y.-T., Xue F., Zhou F., Chang Y.-F., Fowler B., Lee J.C. Memory switching properties of e-beam evaporated SiOx on N++ Si substrate // Appl. Phys. Lett. 2012. V. 100. P. 083502-1-3.

14. Захаров П.С., Итальянцев А.Г. Эффект переключения электрической проводимости в структурах металл—диэлектрик—металл на основе нестехиометрического оксида кремния // Труды МФТИ. 2015. Т. 7. № 2. С. 113–118.

15. Тихов C.B., Горшков О.Н., Антонов И.Н., Касаткин А.П., Королев Д.С., Белов А.И., Михайлов А.Н., Тетельбаум Д.И. Изменение иммитанса при электроформовке и резистивном переключении в мемристивных структурах “металл—диэлектрик—металл” на основе SiOx // ЖТФ. 2016. Т. 86. Вып. 5. С. 107–111.

16. Mehonic A., Shluger A.L., Gao D., Valov I., Miranda E., Ielmini D., Bricalli A., Ambrosi E., Li C., Yang J.J., Xia Q., Kenyon A.J. Silicon oxide (SiOx): A promising material for resistance switching? // Adv. Mater. 2018. P. 1801187-1-21.

17. Wen X., Tang W., Lin Z., Peng X., Tang Z., Hou L. Solution-processed small-molecular organic memristor with a very low resistive switching set voltage of 0.38 V // Appl. Phys. Lett. 2023. V. 122. P. 173301-1-6.

18. Мордвинцев В.М., Кудрявцев С.Е., Левин В.Л. Электроформовка как процесс самоформирования проводящих наноструктур для элементов энергонезависимой электрически перепрограммируемой памяти // Российские нанотехнологии. 2009. Т. 4. № 1–2. С. 174–182.

19. Мордвинцев В.М., Кудрявцев С.Е., Левин В.Л. Высокостабильная энергонезависимая электрически перепрограммируемая память на самоформирующихся проводящих наноструктурах // Российские нанотехнологии. 2009. Т. 4. № 1–2. С. 183–191.

20. Mordvintsev V.M., Kudryavtsev S.E. Investigation of electrical characteristics of memory cells based on self-forming conducting nanostructures in a form of the TiN—SiO2—W open sandwich structure // Russ. Microelectron. 2013. V. 42. No. 2. P. 68–78.

21. Mordvintsev V.M., Gorlachev E.S., Kudryavtsev S.E., Levin V.L. Influence of oxygen pressure on switching in memoristors based on electromoformed open sandwich structures // Russ. Microelectron. 2020. V. 49. No. 4. P. 269–277.

22. Mordvintsev V.M., Gorlachev E.S., Kudryavtsev S.E. Effect of the electroformation conditions on the switching stability of memristors based on open “sandwich” structures in an oxygen medium // Russ. Microelectron. 2021. V. 50. No. 3. P. 146–154.

23. Mordvintsev V.M., Gorlachev E.S., Kudryavtsev S.E. A mechanism for the formation of a conducting medium in memristers based on electroformed open sandwich MDM structures // Russ. Microelectron. 2022. V. 51. No. 4. P. 255–263.

24. Mordvintsev V.M., Kudryavtsev S.E., Naumov V.V., Gorlachev E.S. Effect of the material of electrodes on electroformation and properties of memristors based on open metal — SiO2—metal sandwich structures // Russ. Microelectron. 2023. V. 52. No. 5. P. 419–428.

25. Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М.: Мир, 1974. 472 с.

Comments

No posts found

Write a review
Translate