RAS Nano & ITМикроэлектроника Russian Microelectronics

  • ISSN (Print) 0544-1269
  • ISSN (Online) 3034-5480

Influence of nickel impurities on the operational parameters of a silicon solar cell

PII
262768-537607-1
DOI
10.7868/27607-1
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 53 / Issue number 2
Pages
169-178
Abstract
The results of studies of the influence of nickel impurities introduced by diffusion into monocrystalline silicon on the characteristics of solar cells are presented. It has been established that doping with nickel atoms makes it possible to increase the lifetime of minority charge carriers in the material by up to 2 times, and the efficiency of solar cells by 20–25%. It was shown that the distribution of nickel clusters in the volume of the material is almost uniform, and their size does not exceed 0.5 μm. The concentration of clusters in the volume is ~1011–1013 cm–3, and in the near-surface layer — ~1013–1015 cm–3. The physical mechanisms of the influence of bulk and near-surface clusters of nickel atoms on the efficiency of silicon solar cells have been identified. It has been established experimentally that the processes of gettering of recombination-active technological impurities by nickel clusters, which occur in the nickel-enriched front surface region of solar cells, play a decisive role in increasing their efficiency.
Keywords
кремниевый солнечный элемент диффузия кластеры никеля рекомбинационные центры геттерирование
Date of publication
10.01.2026
Year of publication
2026
Number of purchasers
0
Views
116

References

  1. 1. Green M., Dunlop E., Hohl-Ebinger J., Yoshita M., Kopidakis N., Hao X. Solar cell efficiency tables (version 58) // Prog Photovolt Res Appl. 2021. V. 29. P. 657–667. https://doi.org/10.1002/pip.3444
  2. 2. Ikhmayies Sh. Advances in Silicon Solar Cells // Springer International Publishing. 2018. P. 337. https://doi.org/10.1007/978-3-319-69703-1
  3. 3. Panaiotti I.E., Terukov E.I. A Study of the Effect of Radiation on Recombination Loss in Heterojunction Solar Cells Based on Single-Crystal Silicon // Tech. Phys. Lett. 2019. V. 45. No. 3. P. 193–196. https://doi.org/10.1134/S106378501903012X
  4. 4. Richter A., Müller R., Benick J., Feldmann F., Steinhauser B., Reichel Ch., Fell A., Bivour M., Hermle M., Glunz S.W. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses // Nature Energy. 2021. V. 6. P. 429–438. https://doi.org/10.1038/s41560-021-00805-w
  5. 5. Koval’chuk N.S., Lastovskii S.B., Odzhaev V.B., Petlitskii A.N., Prosolovich V.S., Shestovsky D.V., Yavid V.Yu., Yankovskii Yu.N. Influence of Structural Defects on the Electrophysical Parameters of pin-Photodiodes // Russian Microelectronics. 2023. V. 52. No. 4. Р. 276–282. DOI: S054412692370045X.
  6. 6. Yatsukhnenko S., Druzhinin A., Ostrovskii I., Khoverko Yu., Chernetskiy M. Nanoscale Conductive Channels in Silicon Whiskers with Nickel Impurity // Nanoscale Res Lett. 2017. V. 12. Nо. 78. P. 1–7. https://doi.org/10.1186/s11671-017-1855-9
  7. 7. Liu A., Phang S.P., Macdonald D. Gettering in silicon photovoltaics: A review // Solar Energy Materials and Solar Cells. 2022. V. 234. P. 111447. https://doi.org/10.1016/j.solmat.2021.111447
  8. 8. Chistyakova A.A., Bazhanov D.I. The Study of Nickel Impurity Segregation on LSNT Perovskite Open Surfaces by Ab Initio Molecular Dynamics // Russ Microelectron. 2022. V. 51. P. 654–658. https://doi.org/10.1134/S1063739722080121
  9. 9. Bayrambay I., Kanatbay I., Khayratdin K., Gulbadan S. Suppression of harmful impurity atoms with clusters of nickel impurity atoms in a silicon lattice // AIP Conference Proceedings. 2022. V. 2552. P. 060015. https://doi.org/10.1063/5.0129486
  10. 10. Spit F.H.M., Gupta D., Tu K.N. Diffusivity and solubility of Ni (63Ni) in monocrystalline Si // Phys. Review B. 1989. V. 39. P. 1255–1260.
  11. 11. Lindroos J., Fenning D.P., Backlund D.J., Verlage E., Gorgulla A., Estreicher S.K., Savin H., Buonassisi T. Nickel: A very fast diffuser in silicon // J. Appl. Phys. 2013. V. 113. P. 204906. https://doi.org/10.1063/1.4807799
  12. 12. Bakhadyrkhanov M.K., Isamov S.B., Kenzhaev Z.T., Koveshnikov S.V. Studying the Effect of Doping with Nickel on Silicon-Based Solar Cells with a Deep p–n-Junction // Tech. Phys. Lett. 2019. V. 45. Nо. 10. P. 959–962. https://doi.org/10.1134/S1063785019100031
  13. 13. Bakhadyrkhanov M.K., Isamov S.B., Kenzhaev Z.T., Melebaev D., Zikrillayev Kh.F., Ikhtiyarova G.A. Silicon Photovoltaic Cells with Deep p–n-Junction // Appl. Sol. Energy. 2020. V. 56. Nо. 1. P. 13–17. https://doi.org/10.3103/S0003701X2001003X
  14. 14. Bakhadyrkhanov M.K., Kenzhaev Z.T. Optimal Conditions for Nickel Doping to Improve the Efficiency of Silicon Photoelectric Cells // Tech. Phys. 2021. V. 66. Nо. 7. P. 851–856. https://doi.org/10.1134/S1063784221060049
  15. 15. Bakhadirkhanov M.K., Kenzhaev Z.T., Turekeev Kh.S., Isakov B.O., Usmonov A.A. Gettering properties of nickel in silicon photocells // Tech. Phys. 2022. V. 67. Nо. 14. P. 2217–2220. DOI: 10.21883/TP.2022.14.55221.99-21.
  16. 16. Zikrillayev N., Kenzhaev Z., Ismailov T., Kurbanova U., Aliyev B. Effect of nickel doping on the spectral sensitivity of silicon solar cells // E3S Web of Conferences. 2023. V. 434. P. 01036 (1–3). https://doi.org/10.1051/e3sconf/202343401036
  17. 17. Kenzhaev Z.T., Zikrillaev N.F., Ayupov K.S., Ismailov K.A., Koveshnikov S.V. & Ismailov T.B. Enhancing the Efficiency of Silicon Solar Cells through Nickel Doping // Surf. Engin. Appl. Electrochem. 2023. V. 59. Nо. 6. P. 858–866. https://doi.org/10.3103/S1068375523060108
  18. 18. Kerimov E.A. Study of Photodetectors with Schottky Barriers Based on the IrSi – Si Contact // Russ Microelectron. 2023. V. 52. P. 32–34. https://doi.org/10.1134/S1063739722030040
  19. 19. Dubovikov K.M., Garin A.S., Marchenko E.S., Baigonakova G.A., Shishelova A.A., Kovaleva M.A. Effect of Annealing Temperature on the Surface Structure and Properties of Porous TiNi // Inorg. Mater. 2021. Nо. 57. P. 1242–1249. https://doi.org/10.1134/S0020168521120050
  20. 20. Koveshnikov S., Kononchuk O. Gettering of Cu and Ni in mega-electron-volt ion-implanted epitaxial silicon // Appl. Phys. Lett. 1998. V. 73. Nо. 16. P. 2340. https://doi.org/10.1063/1.122455
  21. 21. Togatov V.V., Gnatyuk P.A. A method for measuring the lifetime of charge carriers in the base regions of high-speed diode structures // Semiconductors. 2005. V. 39. P. 360–363. https://doi.org/10.1134/1.1882802
  22. 22. Mil’vidskii M.G., Chaldyshev V.V. Nanometer-size atomic clusters in semiconductors – a new approach to tailoring material properties // Semiconductors. 1998. V. 32. Nо. 5. P. 457–465. https://doi.org/10.1063/1.4807799
  23. 23. Gafner Y.Y., Gafner S.L., Entel P. Formation of an icosahedral structure during crystallization of nickel nanoclusters // Phys. Solid State. 2004. V. 46. No. 7. P. 1327–1330. https://doi.org/10.1134/1.1778460
  24. 24. Tanaka Sh., Ikari T., Kitagawa H. In-Diffusion and Annealing Processes of Substitutional Nickel Atoms in Dislocation-Free Silicon // Jpn. J. Appl. Phys. 2001. V. 40. No. 5R. P. 3063–3068. DOI: 10.1143/JJAP.40.3063.
  25. 25. Ismaylov B.K., Zikrillayev N.F., Ismailov K.A., Kenzhaev Z.T. Clusters of impurity nickel atoms and their migration in the crystal lattice of silicon // Physical Sciences and Technology. 2023. V. 10. Nо. 1. P. 13–18. https://doi.org/10.26577/phst.2023.v10.i1.02
  26. 26. Серафина Б. Преобразование солнечной энергии. М.: Энергоиздат, 1982. 320 с.
  27. 27. Эмсли Дж. Элементы. Справочник: пер. с. англ. М.: Мир, 1993. 256 с.
  28. 28. Афанасьева Н.П., Бринкевич Д.И., Просолович В.С., Янковский Ю.Н. Легирование кремния лантаноидами как способ оптимизации параметров детекторов ионизирующих излучений // Приборы и техника эксперимента. 2002. № 2. С. 24–26.
  29. 29. Дутов А.Г., Комар В.А., Петров В.В., Просолович В.С., Чесноков С.А., Янковский Ю.Н. Геттерирование технологических примесей редкоземельными элементами в кремнии // Материалы 7-й междунар. конф. по микроэлектронике. Минск, 1990. Т. 1. С. 34–36.
  30. 30. Егоров С.Н. Расчет поверхностной энергии металлов в твердом состоянии // Известия вузов. Северо-Кавказский регион. 2003. № 3. С. 132–136.
  31. 31. Dellis S., Christoulaki A., Spiliopoulos N., Anastassopoulos D.L., Vradis A.A. Electrochemical synthesis of large diameter monocrystalline nickel nanowires in porous alumina membranes // J. Appl. Phys. 2013. V. 114. P. 164308. https://doi.org/10.1063/1.4826900
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library