- PII
- 10.31857/S0544126924010072-1
- DOI
- 10.31857/S0544126924010072
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 53 / Issue number 1
- Pages
- 64-74
- Abstract
- The article reviews model-based and model-free approaches to solving problems of spectral ellipsometry related to the measurement of thicknesses and optical parameters of thin layers of dielectrics, metals and semiconductors in microelectronics application. Model-based approaches employ a priori information about the dispersion relation in form of the Cauchy, Drude, Drude—Lorentz and Tautz—Lorentz. Model-free approaches can use any smooth multivariate functional dependence describing a smooth spectral curve. Also, machine learning can be used to implement the model-free approach, which is well suited for determining the thickness of multilayer structures and their optical characteristics and allows to significantly increase the speed of data processing.
- Keywords
- спектральная эллипсометрия обработка данных обратные задачи методы оптимизации машинное обучение глубокое обучение
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 86
References
- 1. Drude P. Beobachtungen über die Reflexion des Lichtes am Antimonglanz // Annalen der Physik und Chemie. Wiley. 1888. V. 270(7). P. 489–531.
- 2. Rothen A. The Ellipsometer, an Apparatus to Measure Thicknesses of Thin Surface Films // Review of Scientific Instruments. AIP Publishing. 1945. V. 16(2). P. 26–30.
- 3. Chen S. et al. On the anomalous optical conductivity dispersion of electrically conducting polymers: ultra-wide spectral range ellipsometry combined with a Drude — Lorentz model // Journal of Materials Chemistry C. Royal Society of Chemistry (RSC). 2019. V. 7(15). P. 4350–4362.
- 4. Мяконьких А.В., Смирнова Е.А., Клементе И.Э. Применение методаспектральной эллипсометрии для исследования процессов атомно-слоевого осаждения // Микроэлектроника. 2021. Т. 50. № 4. С. 264–273. [Miakonkikh A.V., Smirnova E.A., Clemente I.E. Application of the spectral ellipsometry method to study the processes of atomic layer deposition // Russian Microelectronics. 2021. V. 50(4). P. 230–238.]
- 5. Clemente I.E., Miakonkikh A.V. Application of spectral ellipsometry to in situ diagnostics of atomic layer deposition of dielectrics on Silicon and AlGaN // SPIE Proceedings / ed. V. F. Lukichev, K. V. Rudenko. SPIE, 2016.
- 6. Langereis E. et al. In situspectroscopic ellipsometry as a versatile tool for studying atomic layer deposition // Journal of Physics D: Applied Physics. IOP Publishing. 2009. V. 42(7). P. 073001.
- 7. Гайдукасов Р.А., Мяконьких А.В., Руденко К.В. Применение метода регуляризации Тихонова в задачах эллипсометической порометрии low-k диэлектриков // Микроэлектроника. 2022. T. 51. № 4. C. 243–254 [Gaidukasov R.A., Myakon’kikh A.V., Rudenko K.V. Application of the Tikhonov Regularization Method in Problems of Ellipsometic Porometry of Low-K Dielectrics // Russian Microelectronics. Pleiades Publishing Ltd. 2022. V. 51(4). P. 199–209.]
- 8. Archer R.J. Determination of the Properties of Films on Silicon by the Method of Ellipsometry // Journal of the Optical Society of America. The Optical Society. 1962. V. 52(9). С. 970.
- 9. Орликовский А.A., Руденко К.В. Диагностика in situ плазменных технологических процессов микроэлектроники: современное состояние и ближайшие перспективы. Часть III // Микроэлектроника. 2001. T. 30. № 5. C. 275–294. [Orlikovskii A.A., Rudenko K.V. In situ diagnostics of plasma processes in microelectronics: The current status and immediate prospect. Part III // Russian Microelectron. 2001. V. 30. P. 275–294.]
- 10. Поляк Б.Т. Введение в оптимизацию. 1983. [Polyak B.T. Introduction to optimization. 1983.]
- 11. Nelder J.A., Mead R.A. Simplex Method for Function Minimization // Computer Journal. 1965. V. 7. P. 308–313.
- 12. Liu J. et al. Machine learning powered ellipsometry // Light Sci Appl. 2021. V. 10(1). P. 55.
- 13. Li Y. et al. Deep Learning for Rapid Analysis of Spectroscopic Ellipsometry Data // Advanced Photonics Research. 2021. V. 2(12). P. 2100147.
- 14. Arunachalam A. et al. Machine learning approach to thickness prediction from in situ spectroscopic ellipsometry data for atomic layer deposition processes // Journal of Vacuum Science and Technology A. 2022. V. 40(1). P. 012405.
- 15. Alcaire T. et al. Spectroscopic Ellipsometry Imaging for Process Deviation Detection via Machine Learning Approach // 2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2020.
- 16. Azzam R.M.A., Bashara N.M. Ellipsometry and polarized light // North Holland Personal Library. Amsterdam. 1977.
- 17. Born M., Wolf E. Principles of Optics. 7th Edition. 1997.
- 18. Jellison G.E., Modine F.A. Handbook of Ellipsometry ed. H.G. Tompkins and E.A. Irene // Springer. New York. 2005. Chap. 6.
- 19. Woollam J.A. Complete EASE Software Manual for Spectroscopic Ellipsometer ver. 6.
- 20. Fujiwara H., Collins R.W. Spectroscopic Ellipsometry for Photovoltaics. Volume 1. Fundamental Principles and Solar Cell Characterization-Springer.
- 21. Cauchy L. Bull. Des. Sc. Math. 1830. V. 14(9).
- 22. Urbach F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids // Phys. Rev. 1953. V. 92(5). P. 1324–1324.
- 23. Sellmeier W. Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien // Ann. Phys. Chem. 1872. V. 223(11). P. 386–403.
- 24. Lee H.W. The Hartmann formula for the dispersion of glass // Transactions of the Optical Society. IOP Publishing. 1926. V. 28(3). P. 161–167.
- 25. Conrady A.E. Applied Optics and Optical Design. 1985.
- 26. Briot M. Essai sur la théorie mathématique de la lumière // Paris, Mallet-Bachelier. Harvard University. 1864.
- 27. Cardona M.Р.Yu. Fundamentals of Semiconductors // Springer Berlin Heidelberg. 2005.
- 28. Wooten F. Optical Properties of Solids // Academic Press. New York. 1972.
- 29. Kittel C. Introduction to Solid State Physics, 5th ed. // Wiley. New York. 1976.
- 30. Tiwald T.E. et al. Application of IR variable angle spectroscopic ellipsometry to the determination of free carrier concentration depth profiles // Thin Solid Films. 1998. V. 313–314. P. 661–666.
- 31. Tauc J. Amorphous and Liquid Semiconductors // Plenum. New York. 1974.
- 32. Tauc J., Grigorovici R., Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium // Phys. Stat. Sol. (b). 1966. V. 15(2). P. 627–637.
- 33. Швец В.А., Гриценко Д.В., Алиев В.Ш. и др. Дисперсия оптических констант тонких аморфных пленок Ta2O5 по данным спектроэллипсометрии // Микроэлектроника. 2004. Т. 33. № 5. С. 352 Mallet-Bachelier 358. [Shvets V.A. et al. Uniformity of Optical Constants in Amorphous Ta2O5 Thin Films as Measured by Spectroscopic Ellipsometry // Russian Microelectronics. 2004. V. 33. No. 5. P. 285–291.]
- 34. Forouhi A.R., Bloomer I. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics // Phys. Rev. B. 1986. V. 34(10). P. 7018–7026.
- 35. McGahan W.A., Woollam J.A. Optical Characterization and Modeling of Amorphous Hydrogenated Carbon Films // MRS Proc. 1994. V. 349.
- 36. Jellison G.E.Jr., Modine F.A. Parameterization of the optical functions of amorphous materials in the interband region // Appl. Phys. Lett. 1996. V. 69(3). P. 371–373.
- 37. Kim I. et al. Optical spectrum augmentation for machine learning powered spectroscopic ellipsometry // Opt. Express. 2022. V. 30(10). P. 16909.
- 38. Sarker I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions // SN COMPUT. SCI. 2021. V. 2(3).
- 39. Lussier F. et al. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering // TrAC Trends in Analytical Chemistry. 2020. V. 124. P. 115796.
- 40. Enders A.A. et al. Functional Group Identification for FTIR Spectra Using Image-Based Machine Learning Models // Anal. Chem. 2021. V. 93(28). P. 9711–9718.
- 41. Park W.B. et al. Classification of crystal structure using a convolutional neural network // Int Union Crystallogr J. 2017. V. 4(4). P. 486–494.
- 42. Yanguas-Gil A., Elam J.W. Machine learning and atomic layer deposition: Predicting saturation times from reactor growth profiles using artificial neural networks // Journal of Vacuum Science and Technology A. 2022. V. 40(6). P. 062408.
- 43. LeCun Y. et al. Backpropagation Applied to Handwritten Zip Code Recognition // Neural Computation. MIT Press — Journals. 1989. V. 1(4). P. 541–551.
- 44. Ивахненко А.Г., Лапа В.Г. Кибернетические предсказывающие устройства. 1965. [Ivakhnenko A.G., Lapa V.G. Cybernetic predictive devices. 1965]
- 45. Dechter R. Learning While Searching in Constraint-Satisfaction-Problems // Proceedings of the 5th National Conference on Artificial Intelligence. Philadelphia, PA, August 11–15, 1986. Volume 1: Science.
- 46. Palik E.D. Handbook of Optical Constants of Solids // Academic Press, San Diego. 1985.
- 47. Optical Data from Sopra SA. http://www.sspectra.com/sopra.html.
- 48. Langereis E. et al. In situspectroscopic ellipsometry as a versatile tool for studying atomic layer deposition // J. Phys. D: Appl. Phys. 2009. V. 42(7). P. 073001.
- 49. Fix E., Hodges J.L. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties International Statistical Review / Revue Internationale de Statistique. 1989. V. 57(3). P. 238.
- 50. Cortes C., Vapnik V. Support-vector networks // Mach Learn. 1995. V. 20(3). P. 273–297.
- 51. Tin Kam Ho. The random subspace method for constructing decision forests IEEE Trans. Pattern Anal. Machine Intell. 1998. V. 20(8). P. 832–844.
- 52. Von Winterfeldt D., Edwards W. Decision Analysis and Behavioral Research // Cambridge University Press. 1986
- 53. Tolles J., Meurer W. J. Logistic Regression // JAMA. 2016. V. 316(5). P. 533.
- 54. Alcaire T. et al. On the Fly Ellipsometry Imaging for Process Deviation Detection // IEEE Trans. Semicond. Manufact. 2022. V. 35(3). P. 432–438.
- 55. Sun Q. et al. Nondestructive monitoring of annealing and chemical-mechanical planarization behavior using ellipsometry and deep learning // Microsyst Nanoeng. 2023. V. 9(1).
- 56. Kwak H. et al. Non-destructive thickness characterisation of 3D multilayer semiconductor devices using optical spectral measurements and machine learning // Light: Advanced Manufacturing. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. 2021. V. 2(1). P. 9.
- 57. Kwak H., Kim J. Semiconductor Multilayer Nanometrology with Machine Learning // Nanomanufacturing and Metrology. Springer Science and Business Media LLC. 2023. V. 6(1).
- 58. Tian S.I.P. et al. Rapid and Accurate Thin Film Thickness Extraction via UV–Vis and Machine Learning // 2020 47th IEEE Photovoltaic Specialists Conference (PVSC). IEEE. 2020.