- PII
- 10.31857/S0544126924010051-1
- DOI
- 10.31857/S0544126924010051
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 53 / Issue number 1
- Pages
- 51-57
- Abstract
- A set of transfer and output current-voltage characteristics of a bipolar transistor with a short-period superlattice in the emitter region has been calculated. It is shown that the presence of a superlattice in the tr ansistor structure leads to the fo rmation of a negative differential conductivity region, which makes it possible to implement not only amplification, but also the generation and multiplication of high-frequency oscillations.
- Keywords
- короткопериодная сверхрешетка отрицательная дифференциальная проводимость гетеробиполярный транзистор
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 90
References
- 1. Kholod A.N., Liniger M., Zaslavsky A., Arnaud d’Avitaya F. Cascaded resonant tunneling diode quantizer for analog-to-digital flash conversion // Appl. Phys. Lett., 79(1). 129 (2001).
- 2. Ourednik P., Feiginov M. Double-resonant-tunneling-diode patch-antenna oscillators // Appl. Phys. Lett., 120(18), 183501 (2022).
- 3. Reed M.A., Frensley W.R., Matyi R.J., Randall J.N., Seabaugh A.C. Realization of a three‐terminal resonant tunneling device: The bipolar quantum resonant tunneling transistor // Appl. Phys. Lett., 54(11), 1034 (1989).
- 4. Tsai J.H. Application of an AlGaAs/GaAs/InGaAs heterostructure emitter for a resonant-tunneling transistor // Appl. Phys. Lett., 75(17), 2668 (1999).
- 5. Попов В.Г. Полевой транзистор с двумерными системами носителей в затворе и канале // ФТП, 50(2), 236 (2016).
- 6. Liu W.C., Lour W.S. Modeling the DC Performance of Heterostructure-Emitter Bipolar Transistor // Appl. Phys. Lett., 70(1), 486 (1991).
- 7. Tsai J.H. Multiple negative differential resistance of InP/InGaAs superlattice-emitter resonant-tunneling bipolar transistor at room temperature // Appl. Phys. Lett., 83(13), 2695 (2003).
- 8. Tsai J.H., Huang C.H., Lour W.S., Chao Y.T., Ou-Yang, Jhou High-performance InGaP/GaAs superlattice — emitter bipolar transistor with multiple S-shaped negative-differential-resistance switches under inverted operation mode // Thin Solid Films, 521, 168 (2012).
- 9. Pavelyev D.G., Vasilev A.P., Kozlov V. A., Obolensky E.S., Obolensky S.V., Ustinov V.M. Increase of Self-Oscillation and Transformation Frequencies in THz Diodes // IEEE Transactions on Terahertz Science and Technology, 8(2), 231 (2018).
- 10. Sun J.P., Mains R.K., Yang K., Haddad G.I. A self‐consistent model of Γ‐X mixing in GaAs/AlAs/GaAs quantum well structures using the quantum transmitting boundary method // J. Appl. Phys., 74(8), 5053 (1993).
- 11. Ohnishi H., Inata T., Muto S., Yokoyama N., Shibatomi A. Self‐consistent analysis of resonant tunneling current // Appl. Phys. Lett., 49(19), 1248 (1986).
- 12. Cahay M., McLennan M., Datta S., Lundstrom M.S. Importance of space‐charge effects in resonant tunneling devices // Appl. Phys. Lett., 50(10), 612 (1987).
- 13. Кардона М.П.Ю. Основы физики полупроводников. М.: ФИЗМАТЛИТ, 2002. 560 с.
- 14. Зи С. Физика полупроводниковых приборов. М.: Мир, 1984. Кн. 1. 456 с.