RAS Nano & ITМикроэлектроника Russian Microelectronics

  • ISSN (Print) 0544-1269
  • ISSN (Online) 3034-5480

Multilevel Memristive Structures Based on YBa2Cu3O7–δ Epitaxial Films

PII
10.31857/S0544126923700382-1
DOI
10.31857/S0544126923700382
Publication type
Status
Published
Authors
Volume/ Edition
Volume 52 / Issue number 4
Pages
315-321
Abstract
Pulse studies of transients in the effect of resistive switching in planar heterocontacts based on strongly correlated electronic systems are presented using the example of memristive transitions based on YBa2Cu3O7–δ. It is shown that the switching process is asymmetric with respect to switching to low-resistance and high-resistance metastable states; and switching times are regulated by the voltage level and can be less than microseconds; however, relaxation processes last several seconds. The ability to adjust switching times characterizes the plasticity of these devices as memory elements for neuromorphic applications. in spike neu-ral networks.
Keywords
интерфейсные структуры гетероструктуры мемристор резистивные переключения пленки вакансии
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
21

References

  1. 1. Yang J. Joshua, Dmitri B. Strukov, Duncan R. Stewart. Memristive devices for computing // Nature Materials. 2013. V. 8. P. 13.
  2. 2. Wang C., Wu H., Gao B. et al. // Conduction mechanisms, dynamics and stability in ReRAMs: Microelectron. Eng., 2018. V. 187–188. P. 121.
  3. 3. Li Y., Wang Z., Midya R., Xia Q., Yang J.J. Review of memristor devices in neuromorphic computing: materials sciences and device challenges // J. Phys. D. 2018. V. 51. P. 503002.
  4. 4. Pérez-Tomás A. Functional oxides: functional oxides for photoneuromorphic engineering: toward a solar brain // Adv. Mater. Interfaces. 2019. V. 6. P. 1970096.
  5. 5. Mikhaylov A., Pimashkin A., Pigareva Y. et al. CMOS-Integrated systems for biosensors and neuroprosthetics. Front Neurosciens. 2020. V. 14. P. 358.
  6. 6. Websites of the International Technology Roadmap for SemicHPCductors and the Semiconductor Technology Roadmap, https://www.semiconductors.org/wp-cHPCtent/ uploads/2018/06/0_2015-ITRS-2.0-Executive-Report
  7. 7. Tulina N.A., Ivanov A.A. Memristive Properties of Oxide-based High-Temperature Superconductors // J. Supercond Nov. Magn. 2020. V. 33. P. 2279–2286.
  8. 8. Тулина А.Н., Россоленко И.М., Шмытько А.А. и др. Функциональные свойства анизотропных перовскитных соединений в мемристорных структурах для применения вэлектронике // Наноиндустрия. 2019. Т. 89. С. 237–240.
  9. 9. Andy Thomas. Memristor-based neural networks // J. Phys. D: Appl. Phys. 2013. V. 46. P. 093001–093013.
  10. 10. Stoliar P., Tranchant J., Corraze B. et al. A Leaky-Integrate-and-Fire Neuron Analog Realized with a Mott Insulator // Adv. Funct. Mater. 2017. V. 27. P. 1604740.
  11. 11. Tulina N.A., Rossolenko A.N., Ivanov A.A. et al. Nd2 – xCexCuO4 – y/Nd2 – xCexOyboundary and resistive switchings in mesoscopic structures on base of epitaxial Nd1.86Ce0.14CuO4 – y films. // Physica C: Superconductivity and its applications. 2016. V. 527. P. 41–45.
  12. 12. Tulina N.A., Rossolenko A.N., Shmytko I.M. et al. Properties of percolation channels in planar memristive structures based on epitaxial films of a YBa2Cu3O7 – δ high temperature superconductor // Supercond. Sci. Technol. 2019. V. 32. P. 015003.
  13. 13. Berdan R., Serb A., Khiat A. et al. A controller-based system for interfacing selectorless RRAM crossbar arrays // IEEE Transactions on Electron Devices. 2015. V. 6. P. 2190.
  14. 14. Serb A., Khiat A., Prodromakis T. An RRAM Biasing Parameter Optimizer // IEEE Transactions HPC Electron Devices. 2015. V. 62. P. 3685–3691.
  15. 15. Tulina N.A., Ivanov A.A., Rossolenko et al. X-ray photoelectron spectroscopy studies of electronic structure of Nd2 – xCexCuO4 – y and YBa2Cu3O7 – y epitaxial film surfaces and resistive switchings in high temperature superconductor-based heterostructures // Mater. Lett. 2017. V. 203. P. 97.
  16. 16. Acha C. Dynamical behaviour of the resistive switching in ceramic YBCO/metal interfaces // J. Phys. D: Appl. Phys. 2011. V. 44. P. 345301.
  17. 17. Moreo A., Yunoki S., Dagotto E. Phase separation scenario for manganese oxides and related materials // Science. 1999. V. 283. P. 2034–2040.
  18. 18. Tulina N.A., Borisenko I.Yu., Shmytko I.M. et al. The Study of Switching Dynamics in Planar Memristive Structures Based on Epitaxial Films of YBa2Cu3O7 – δ High-Temperature Superconductor // J. Superconductivity and Novel Magnetism. 2020. V. 33. P. 3695–3704.
  19. 19. Oka T., Nagaosa N. Interfaces of Correlated Electron Systems // Phys. Rev. Let. 2005. V. 95. P. 266403-4.
  20. 20. Tulina N.A., Borisenko I.Yu. Frequency Dependence of the Resistive Switching Effect in Bi2Sr2CaCu2O8 + y/Ag film Heterocontacts // Physics Letters A. 2008. V. 372. P. 918–923.
  21. 21. Sirotkin V.V., Tulina N.A., Rossolenko A.N., Borisenko I.Yu. Numerical Simulation of Resistive Switching in Heterostructures Based on Anisotropic Oxide Compounds // Bulletin of the Russian Academy of Sciences. Physics. 2016. V. 80. P. 497–499.
  22. 22. Tulina N.A., Shmytko I.M., Ivanov A.A. et al. Memristive Properties of Manganite-Based Planar Structures // Russian Microelectronics. 2022. V. 51. № 5. P. 349–357.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library