RAS Nano & ITМикроэлектроника Russian Microelectronics

  • ISSN (Print) 0544-1269
  • ISSN (Online) 3034-5480

SELF-ASSEMBLY OF 3D MESOSTRUCTURES USING LOCAL ION-PLASMA TREATMENT

PII
S0544126925030081-1
DOI
10.31857/S0544126925030081
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 54 / Issue number 3
Pages
261-270
Abstract
The technology of self-assembly of three-dimensional cubic mesostructures is presented, based on ion-plasma action on certain local areas of flat blanks formed from Cr and Cr/SiO films. The driving force of self-assembly is the stress gradient arising in chromium during ion bombardment in the plasma of Ar RF induction discharge. Folding of the blank into a three-dimensional structure occurs when the elements of the blank are suspended as a result of etching of the underlying silicon.
Keywords
самосборка мезоструктура механические напряжения плазма ионная бомбардировка
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Zhang Y., Zhang F., Yan Z., Ma Q., Li X., Huang Y., Rogers J.A. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials // Nature Reviews Materials. 2017. V. 2. № 4. P. 1–17.
  2. 2. Karnaushenko D., Kang T., Bandari V.K., Zhu F., Schmidt O.G. 3D self‐assembled microelectronic devices: concepts, materials, applications // Advanced Materials. 2020. V. 32. № 15. P. 1902994.
  3. 3. Liu N. Guo H., Fu L., Kaiser S., Schweizer H., Giessen H. Three-dimensional photonic metamaterials at optical frequencies // Nature materials. 2008. V. 7. № 1. P. 31–37.
  4. 4. Bo R., Xu S., Yang Y., Zhang Y. Mechanically-guided 3D assembly for architected flexible electronics // Chemical Reviews. 2023. V. 123. № 18. P. 11137–11189.
  5. 5. Guo X., Xue Z., Zhang Y. Manufacturing of 3D multifunctional microelectronic devices: challenges and opportunities // NPG Asia Materials. 2019. V. 11. № 1. P. 29.
  6. 6. Chen S., Chen J., Zhang X., Li Z.Y., Li J. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding” // Light: Science & Applications. 2020. V. 9. № 1. P. 75.
  7. 7. Rogers J., Huang Y., Schmidt O.G., Gracias D.H. Origami mems and nems // Mrs Bulletin. 2016. V. 41. № . 2. P. 123–129.
  8. 8. Zhang Z., Tian Z., Mei Y., Di Z. Shaping and structuring 2D materials via kirigami and origami // Materials Science and Engineering: R: Reports. 2021. V. 145. P. 100621.
  9. 9. Cho J.H., Keung M.D., Verellen N., Lagae L., Moshchalkov V.V., Van Dorpe P., Gracias D.H. Nanoscale origami for 3D optics // Small. 2011. V. 7. № 14. P. 1943–1948.
  10. 10. Mak Y.X., Dijkshoorn A., Abayazid M. Design Methodology for a 3D Printable Multi‐Degree of Freedom Soft Actuator Using Geometric Origami Patterns // Advanced Intelligent Systems. 2024. V. 6. № 6. P. 2300666.
  11. 11. Salerno M., Firouzeh A., Paik J. A low profile electromagnetic actuator design and model for an origami parallel platform // Journal of Mechanisms and Robotics. 2017. V. 9. № . 4. P. 041005.
  12. 12. Novelino L.S., Ze Q., Wu S., Paulino G.H., Zhao R. Untethered control of functional origami microrobots with distributed actuation // Proceedings of the National Academy of Sciences. 2020. V. 117. № 39. P. 24096–24101.
  13. 13. Yan W., Li S., Deguchi M., Zheng Z., Rus D., Mehta A. Origami-based integration of robots that sense, decide, and respond // Nature Communications. 2023. Т. 14. № 1. С. 1553.
  14. 14. Xu W., Li T., Qin Z., Huang Q., Gao H., Kang K., Park J., Buehler M.J., Khurgin J.B., Gracias D.H. Reversible MoS2 origami with spatially resolved and reconfigurable photosensitivity // Nano letters. 2019. V. 19. № 11. P. 7941–7949.
  15. 15. Guo X., Li H., Yeop Ahn B., Duoss E.B., Hsia K.J., Lewis J.A., Nuzzo R.G. Two-and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications // Proceedings of the National Academy of Sciences. 2009. V. 106. № 48. P. 20149–20154.
  16. 16. Randhawa J.S., Gurbani S.S., Keung M.D., Demers D.P., Leahy-Hoppa M.R., Gracias D.H. Three-dimensional surface current loops in terahertz responsive microarrays // Applied Physics Letters. 2010. V. 96. № 19.
  17. 17. Yu Y., Lorenz P., Strobel C., Zajadacz J., Albert M., Zimmer K., Kirchner R. Plasmonic 3D Self-Folding Architectures via Vacuum Microforming // Small. 2022. V. 18. № . 7. P. 2105843.
  18. 18. Joung D., Nemilentsau A., Agarwal K., Dai C., Liu C., Su Q., Li J., Low T., Koester S.J., Cho J.H. Self-assembled three-dimensional graphene-based polyhedrons inducing volumetric light confinement // Nano letters. 2017. V. 17. № 3. P. 1987–1994.
  19. 19. Anacleto P., Gultepe E., Gomes S., Mendes P.M., Gracias D.H. Self-folding microcube antennas for wireless power transfer in dispersive media. Technology // 2016. V. 04. № 02. P. 120–129.
  20. 20. McCaskill J.S., Karnaushenko D., Zhu M., Schmidt O.G. Microelectronic Morphogenesis: Smart Materials with Electronics Assembling into Artificial Organisms // Advanced Materials. 2023. V. 35. № 51. P. 2306344.
  21. 21. Bolanos Quinones V.A., Zhu H., Solovev A.A., Mei Y., Gracias D.H. Origami biosystems: 3D assembly methods for biomedical applications // Advanced Biosystems. 2018. V. 2. № 12. P. 1800230.
  22. 22. Azam A., Laflin K.E., Jamal M., Fernandes R., Gracias D.H. Self-folding micropatterned polymeric containers // Biomedical microdevices. 2011. V. 13. P. 51–58.
  23. 23. Fernandes R., Gracias D.H. Self-folding polymeric containers for encapsulation and delivery of drugs // Advanced drug delivery reviews. 2012. V. 64. № 14. P. 1579–1589.
  24. 24. Cools J., Jin Q., Yoon E., Alba Burbano D., Luo Z., Cuypers D., Callewaert G., Braeken D. A micropatterned multielectrode shell for 3D spatiotemporal recording from live cells // Advanced Science. 2018. V. 5. № 4. P. 1700731.
  25. 25. Leong T.G., Benson B.R., Call E.K., Gracias D.H. Thin film stress driven self‐folding of microstructured containers // Small. 2008. V. 4. № . 10. P. 1605–1609.
  26. 26. Zhang J., Reif J., Strobel C., Chava P., Erbe A., Voigt A., Mikolajick T., Kirchner R. Dry release of MEMS origami using thin Al2O3 films for facet-based device integration // Micro and Nano Engineering. 2023. V. 19. P. 100179.
  27. 27. Bassik N., Stern G. M., Gracias D. H. Microassembly based on hands free origami with bidirectional curvature // Applied physics letters. 2009. V. 95. № 9.
  28. 28. Liu Z., Du H., Li Z.Y., Fang N.X., Li J. Invited Article: Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation // Apl. Photonics. 2018. V. 3. № 10.
  29. 29. Mao Y., Zheng Y., Li C., Guo L., Pan Y., Zhu R., Xu J., Zhang W., Wu W. Programmable bidirectional folding of metallic thin films for 3D chiral optical antennas // Advanced materials. 2017. V. 29. № 19. P. 1606482.
  30. 30. Бабушкин А.С., Уваров И.В., Амиров И.И. Влияние низкоэнергетической ионно-плазменной обработки на остаточные напряжения в тонких пленках хрома // Журнал технической физики. 2018. Т. 88. № 12. С. 1845.
  31. 31. Babushkin A., Selyukov R., Amirov I. Effect of Ar ion-plasma treatment on residual stress in thin Cr films // Proc. of SPIE. 2019. V. 11022. P. 1102223–1.
  32. 32. Fang W. Determining mean and gradient residual stresses in thin films using micromachined cantilevers / Fang W., Wickert J. A. //Journal of Micromechanics and Microengineering. 1996. V. 6. № 3. P. 301.
  33. 33. Selyukov R.V., Amirov I.I., Naumov V.V. Effect of Ion-Plasma Treatment on the Phase Composition and Electrical Resistivity of Nanometer-Thick Tungsten Films // Russ. Microelectron. 2022. V. 51. P. 488–496.
  34. 34. Пат. 2630528 Российская Федерация, МПК B81 B3/00, C23 C14/35. Способ изготовления балки с заданным изгибом / Уваров И. В., Наумов В. В., Амиров И. И.; заявитель и патентообладатель Федеральное государственное бюджетное учреждение науки Физикотехнологический институт Российской академии наук (ФТИАН РАН). № 2016111251; заявл. 25.03.2016; опубл. 11.09.2017, Бюл. № 26. – 5с.: ил.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library