RAS Nano & ITМикроэлектроника Russian Microelectronics

  • ISSN (Print) 0544-1269
  • ISSN (Online) 3034-5480

NANOSTRUCTURED RUTHENIUM ETCHING IN THREE-COMPONENT Cl/O/Ar PLASMA

PII
S0544126925030076-1
DOI
10.31857/S0544126925030076
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 54 / Issue number 3
Pages
251-260
Abstract
Using spectral and probe diagnostic methods for the radical composition and electronic component of the removed plasma of an RF discharge in a mixture of 50%Ar/Cl/O, low-energy (E ~80 eV) etching of a nanometer-thick Ru film was studied depending on pressure, RF power, and relative content of Cl/O. With a 10–30 percent chlorine content in the plasma, a wide maximum of the Ru etching rate is observed. In a plasma of this composition, using an array of amorphous silicon nanocones as a mask, vertical nanocolumned Ru structures with a height of 35 nm and a distance between them of 10–20 nm were obtained. The mechanism of Ru etching in plasma of 50%Ar/Cl/O is discussed.
Keywords
рутений травление хлор–кислородсодержащая плазма скорость диагностика ионы энергия ионов наноструктуры
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
23

References

  1. 1. Kim S.K., Popovici M. Future of dynamic random-access memory as main memory // MRS Bulletin, 2018. V.40. P. 334–338.
  2. 2. Kim S.E., Sung J.Y., Jeon J.D., Jang S.Y., Lee H.M., Moon S.M., et.al. Toward advanced high-k and electrode thin films for DRAM capacitors via atomic layer deposition // Adv. Mater. Technol. 2023. V. 8. P. 2200878.
  3. 3. Gall D. The search for the most conductive metal for narrow interconnect lines // J. Appl. Phys. 2020. V. 127. P. 050901.
  4. 4. Barmak K., Ezzat S., Gusley R., Jog A., Kerdsongpanya S., Khaniya A., Milosevic E., Richardson W., Sentosun K., Zangiabadi A., Gall D., Kaden W.E., Mucciolo E.R., Schelling P.K., West A.C., Coffey K.R. Epitaxial metals for interconnects beyond Cu // J. Vac. Sci. Technol. A. 2020. V. 38. P. 033406.
  5. 5. Paolillo S., Wan D., Lazzarino F., Rassoul N., Piumi D., Tőkei Z. Direct metal etch of ruthenium for advanced interconnect // J. Vac. Sci. Technol. B. 2018. V. 36. P. 3E103–1.
  6. 6. Decoster S., Camerotto E., Murdoch G., Kundu S., Le Q.T., Tőkei Z., Jurczak G., Lazzarino F. Patterning challenges for direct metal etch of ruthenium and molybdenum at 32 nm metal pitch and below // J. Vac. Sci. Technol. B. 2022. V. 40. P. 032802.
  7. 7. Hsu C.C., Coburn J.W., Graves D.B. Etching of ruthenium coatings in O2 – and Cl2 -containing plasmas // J. Vac. Sci. Technol. A. 2006. V. 24. P. 1.
  8. 8. Kim H.W., Ju B-S., Kang C.-J. High-rate Ru electrode etching using O/Cl inductively coupled plasma // Microelectronic Engineering. 2003. V. 65. P. 319–326.
  9. 9. Kim H.W. Characteristics of Ru etching using ICP and helicon O2 /Cl2 plasmas // Thin Solid Films. 2005. V. 475. P. 32–35.
  10. 10. Yunogami T., Nojiri K. Anisotropic etching of RuO2 and Ru with high aspect ratio for gigabit dynamic random access memory // J. Vac. Sci. Technol. B2000. V. 18. P. 1911.
  11. 11. Guha J., Donnelly V.M. Studies of chlorine-oxygen plasmas and evidence for heterogeneous formation of ClO and ClO2 // J. Appl. Phys. 2009. V. 105. P. 113307.
  12. 12. Imai M., Matsui M., Sugano R., Shiota T., Takasaki Ko-ichi, Miura M., Ishii Y., Kuwahara K. Activation mechanism of ruthenium etching by Cl based radicals in O2 /Cl2 plasma. Jpn. J. Appl. Phys. 2023. V. 62. P. SI1014.
  13. 13. Hwang S.M., Garay A.A., Lee W.I., Chung C.W. High density plasma reactive ion etching of Ru thin films using non-corrosive gas mixture. Thin Solid Films. 2015. V. 587. P. 28–33.
  14. 14. Hwang S.M., Garay A.A., Choi J.H., Chung C.W. Etch characteristics of Ru thin films using O2 /Ar, CH4/Ar, and O2/CH4 /Ar plasmas. Thin Solid Films. 2016. V. 615. P. 311–317.
  15. 15. Pan W., Desu S.B. Reactive Ion Etching of RuO2 Films // Phys. stat. sol. (a). 1997. V. 161. P. 201–215.
  16. 16. Lee E-J., Kim J-W., Lee W-J. Reactive Ion Etching Mechanism of RuO2 Thin Films in Oxygen Plasma with the Addition of CF4, Cl2, and N2 // Jpn. J. Appl. Phys. 1998. V. 37. P. 2634
  17. 17. Амиров И.И., Куприянов А.Н., Изюмов М.О., Мазалецкий Л.С. Получение цветного наноструктурированного слоя аморфного кремния при травлении в хлорсодержащей плазме // Письма в ЖТФ. 2023. Т. 49. Вып. 8. С. 25–28.
  18. 18. Ullal S.J., Godfrey A.R., Edelberg E., Braly L., Vahedi V., Aydil E.S. Effect of chamber wall conditions on Cl and Cl2 concentrations in an inductively coupled plasma reactor // J. Vac. Sci. Technol. A 2002. V. 20. P. 43–52.
  19. 19. Tinck S., Boullart W., Bogaert A. Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching: effects of SiO2 chamber wall coating // Plasma Sources Sci. Technol. 2011. V. 20. P. 045012.
  20. 20. Bogdanova M., Lopaev D.V., Rakhimova T.V., Voloshin D.G., Zotovich A., Zyryanov S. “Virtual IED sensor” for df rf CCP discharges // Plasma Sources Sci. Technol. 2021. V. 30. P. 075020.
  21. 21. Voloshin D.G., Rakhimova T.V., Kropotkin A., Amirov I.I., Izyumov M.O., Lopaev D, Zotovich A., Zyryanov S.M. Plasma density determination from ion current to cylindrical Langmuir probe with validation on hairpin probe measurements // Plasma Sources Sci. Technol. 2023. V. 32. P. 044001.
  22. 22. Fuller N.C.M., Herman I.P., Donnelly V.M. Optical actinometry of Cl2, Cl, Cl+, and Ar+ densities in inductively coupled Cl2-Ar plasmas // J. Appl. Phys. 2001.V. 90. N7. P. 3182.
  23. 23. Donnelly V.M., Malyshev M.V., Schabel M., Kornblit A., Tai W., Herman I.P., Fuller N.C.M. Optical plasma emission spectroscopy of etching plasmas used in Si-based semiconductor processing // Plasma Sources Sci. Technol. 2002. V. 11. P. A26–A30.
  24. 24. Lopaev D.V., Volynets A.V., Zyryanov S.M., Zotovich A.I., Rakhimov A.T. // Actinometry of O, N and F atoms, J. Phys. D: Appl. Phys., 2017. Vol. 50. P. 075202.
  25. 25. Amirov I.I., Izyumov M.O., Naumov V.V., Gorlachev E.S. Ion-plasma sputtering of Co and Mo nanometer thin films near the sputtering threshold // J. Phys. D: Appl. Phys. 2021. V. 54 P. 065204.
  26. 26. Kropotkin A.N., Voloshin D.G. Simulation of an inductive discharge in argon with the gas flow and inhomogeneous gas temperature // Plasma Physics Reports. 2019. V. 45. P. 786–797.
  27. 27. Kropotkin A.N., Voloshin D.G. ICP argon dischargesimulation: the role of ion inertia and additional RFbias // Physics of Plasmas. 2020. V. 27. N. 5. P. 053507.
  28. 28. Hsu C–C., Nierode M.A., Coburn J.W., Graves D.B. Comparison of model and experiment for Ar, Ar/O2 and Ar/O2/Cl2 inductively coupled plasmas // J. Phys. D: Appl. Phys. 2006. V. 39. P. 3272–3284.
  29. 29. Kawaguchi S., Takahashi K., Satoh K. Electron collision cross section set of Cl2 gas and electron transport analysis in Cl2 gas and Cl2/N2 mixtures // Jpn. J. Appl. Phys. 2020. V. 59 SHHA09.
  30. 30. Booth J.P., Chattejee A., Guaitella O., Lopaev D. Quenching of O 2 (b 1 Σ g +) by O(3 P) atoms. Effect of gas temperature // Plasma Sources Sci. Technol. 2022. V. 31. P. 065012.
  31. 31. Kropotkin A.N., Chukalovsky A.A., Kurnosov A.K., Rakhimova T.V., Palov A.P. Numerical model of a gaseous inductive discharge in oxygen, taking into account the complete scheme of the vibrational kinetics of O2 molecules // Materials. Technologies. Design. 2023. V. 5. N 2. P. 12.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library