RAS Nano & ITМикроэлектроника Russian Microelectronics

  • ISSN (Print) 0544-1269
  • ISSN (Online) 3034-5480

REGULARITIES OF X-RAY TRANSFER IN DOPED MULTICOMPONENT SEMICONDUCTORS FOR DOSIMETRY

PII
S0544126925020016-1
DOI
10.31857/S0544126925020016
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 54 / Issue number 2
Pages
93-115
Abstract
Sensitivity control of semiconductors often requires changing their crystal and electronic structure, which can lead to the loss of their initial semiconductor properties. Chalcogenide semiconductors have high carrier transport properties. However, they face limitations in detecting hard X-rays due to various reasons, in particular, their defective structure and poor X-ray sensitivity. The basic laws of the theory of X-ray conductivity of semiconductors are generalized and simplified taking into account their areas of application. The features of the influence of doping on X-ray sensitivity, determination of the optimal concentration of the dopant, using the example of Cr-doping of chalcogenides, as well as the principle of creating an X-ray detector are considered. As an example of an important X-ray sensitive material, our results on the study of photo- and X-ray conductivity in the layered compound with a monoclinic p-type structure TlGaS containing a doped chromium impurity are presented. Our experimental results of the study of synthesized and grown single crystals of chromium-doped ( 0.5 mol. % Cr) TlGaS:Cr are presented. It is shown that TlGaS:Cr-based materials retain semiconductor properties and are characterized by high electrical transport. Chromium doping increases photosensitivity and polarization between metal and chalcogenide ions in TlGaS:Cr. The doping of Cr impurity on the photoconductivity and band gap of the layered TlGaS single crystal was studied. The change in the spectral sensitivity region of TlGaS:Cr and the appearance of impurity photocurrent peaks in the photon energy region were analyzed. The X-ray dosimetric properties of TlGaS:Cr were studied depending on the irradiation doses. Using TlGaCrS as an example, it was shown that the volt-dose characteristics have good reproducibility. The single crystal detector sample TlGaCrS also demonstrated high photo- and X-ray sensitivity compared to pure TlGaS. The obtained new photoelectric and X-ray dosimetric properties and results show the potential of TlGaS:Cr semiconductor for optoelectronic and radiation technologies.
Keywords
законы переноса рентгеновских лучей в твердых телах Cr-легированный слоистый кристалл TlGaS полупроводниковый детектор излучения неохлаждаемый детектор рентгеновского излучения рентгеновская спектроскопия малошумящая электроника
Date of publication
18.04.2025
Year of publication
2025
Number of purchasers
0
Views
19

References

  1. 1. Yoshida S., Ohsugi T., Fukazawa Y., Yamamura K., Yamamoto K., Sato K. Radiation hardening of silicon strip detectors // Nuclear Instruments and Methods in Physics Research A. 2003. V. 514. No. 1-3. P. 38-43. https://doi.org/10.1016/j.nima.2003.08.081
  2. 2. Arias A., Nedev N., Nesheva D., Curiel M., Manolov E., Mateos D., Dzurkov V., Valdez B., Contreras O., Herrera R., Bineva I., Siqueiros J.M. MOS structures containing Si nanocrystals for applications in UV dosimeters // Key Engineering Materials. 2014. V. 605. P. 380-383. https://doi.org/10.4028/www.scientific.net/KEM.605.380
  3. 3. Sun Y., Zhang S., Shen G., Quan L., Chang Z., Tian C., Jing T., Zhang H., Ding J., Yuan B., Zhang B. Radiation dosimeter and charge detector Onboard BeiDou navigation satellites in MEO // De Gruyter. 2023. V. 32. 20220205. P. 1-7. https://doi.org/10.1515/astro2022-0205
  4. 4. Hou B., Chen Q., Yi L., Sellin P., Sun H.-T., Wong L. J., Liu X. Materials innovation and electrical engineering in X-ray detection // Nature Reviews Electrical Engineering. 22 Aug. 2024. V. 1. P. 639-655. https://doi.org/10.1038/s44287-024-00086-x
  5. 5. Sato E., Oda Y., Sagae M., Yoshida S., Yamaguchi S., Sato Y., Moriyama H., Hagiwara O., Matsukiyo H., Enomoto T., Watanabe M., Kusachi C. Development of a compact dosimeter using a silicon X-ray diode and a long USB cable // Annual Report of Iwate Medical University. Center for Liberal Arts and Sciences. 2017. No. 52. P. 1-5.
  6. 6. Nedev N., Arias A., Curiel M., Nedev R., Mateos D., Manolov E., Nesheva D., Valdez B., Herrera R., Sanchez A. Visible light sensor based on metal-oxide-semiconductor structure // Key Engineering Materials. 2014. V. 605. P. 384-387. https://doi.org/10.4028/www.scientific.net/KEM.605.384
  7. 7. Hossain A., Cui Y., Bolotnikov A.E., Camarda G.S., Yang G., Kochanowska D., Witkowska-Baran M., Mycielski A., James R.B. Vanadium-doped cadmium manganese telluride (Cd1-xMnxTe) crystals as X-and gamma-ray detectors // Journal of Electronic Materials. 2009. V. 38. No. 8. P. 1593-1599. https://doi.org/10.1007/s11664-009-0780-9
  8. 8. Yang G., Bolotnikov A.E., Fochuk P.M., Kopach O., Franc J., Belas E., Kim K.H., Camarda G.S., Hossain A., Cui Y., Adams A.L., Radja A., Pinder R., James R.B. Post-growth thermal annealing study of CdZnTe for developing room-temperature X-ray and gamma-ray detectors // Journal of Crystal Growth. 2013. V. 379. P. 16-20. https://doi.org/10.1016/j.jcrysgro.2012.11.041
  9. 9. Damulira E. Radiation dosimetry in medicine using II-VI semiconductors // Journal of Radiation Research and Applied Sciences. 2022. V. 15. No. 3. P. 72-82. https://doi.org/10.1016/j.jrras.2022.06.001
  10. 10. Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Vol. 3: Sensors, Biosensors and Radiation Detectors. G. Korotcenkov (Eds). Springer Cham. 2023. ISBN 978-3-031-24002-7.
  11. 11. Yang G., Hany I. Thallium-based materials for radiation detection. In: K. Iniewski (Eds). Advanced Materials for Radiation Detection. Springer, Cham. 2022. P. 145.163. https://doi.org/10.1007/978-3-030-76461-6_7
  12. 12. Jayawardena K.D.G.I., Sellin P.J., Nanayakkara M.P.A., Ryan R. Perovskite X-ray detectors. In: B. Pradhan (Eds). Perovskite Optoelectronic Devices. Engineering Materials. Springer, Cham. June 2024. P. 447-474. https://doi.org/10.1007/978-3-031-57663-8_13
  13. 13. Bertuccio G., Puglisi D., Macera D., Liberto R.D., Lamborizio M., Mantovani L. Silicon carbide detectors for in vivo dosimetry // IEEE Transactions on Nuclear Science. 2014. V. 61. No. 2. P. 961-966. https://doi.org/10.1109/TNS.2014.2307957
  14. 14. Iniewski K. (eds). Advanced Materials for Radiation Detection. Springer, Cham. 07 Aug. 2022. ISBN978- 3-030-76463-0.
  15. 15. Lowe B.G., Sareen R.A. Semiconductor X-Ray Detectors. CRC Press. Taylor and Francis Group. 1st Edition. Boca Raton, FL, 2014. 198 p. ISBN 13: 978-1-4665-5401-6.
  16. 16. Pennicard D., Pirard B., Tolbanov O., Iniewski K. Semiconductor Materials for X-ray detectors // MRS Bulletin. 2017. V. 42. No. 6. P. 445-450. https://doi.org/10.1557/mrs.2017.95
  17. 17. Kramberger G. Solid state detectors for high radiation environments. In: Fabjan, C., Schopper, H. (eds). Particle Physics Reference Library. Springer, Cham. Sept. 2020. P. 965-1034. https://doi.org/10.1007/978-3-030-35318-6_21
  18. 18. Damulira E., Yusoff M.N.S., Omar A.F. Taib N.H.M. A Review: Photonic devices used for dosimetry in medical radiation // Sensors. 2019. V. 19. 2226. P. 1-28. https://doi.org/10.3390/s19102226
  19. 19. Koper T., Kowalik A., Adamczyk S. The Semiconductor diode detector response as a function of field size and beam angle of high-energy photons // Reports of Practical Oncology and Radiotherapy. 2017. V. 22. No. 3. P. 193-200. https://doi.org/10.1016/j.rpor.2016.12.004
  20. 20. Karmakar A., Wang J., Prinzie J., Smedt V.D., Leroux P. A Review of semiconductor based ionising radiation sensors used in hard radiation environments and their applications // Radiation. 2021. V. 1. No. 3. P. 194-217. https://doi.org/10.3390/radiation1030018
  21. 21. Kuge Y., Shiga T., Tamaki N. (Eds). Perspectives on nuclear medicine for molecular diagnosis and integrated therapy. Springer, Tokyo, Heidelberg, New York, Dordrecht, London, 2016. ISBN 978-4-431-55892-7
  22. 22. Rosenfeld A. B., Biasi G., Petasecca M., Lerch M. L.F., Villani G., Feygelman V. Semiconductor dosimetry in modern external-beam radiation therapy // Physics in Medicine and Biology. 2020. V. 65. P. 1-95. https://doi.org/10.1088/1361-6560/aba163
  23. 23. Advanced Radiation Detector and Instrumentation in Nuclear and Particle Physics. R. N. Patra (Eds). Springer, Cham. Proceedings of RAPID2021. 09 Feb. 2023. ISBN 978-3-031-19267-8.
  24. 24. Nemerenco L., Syrbu N.N., Dorogan V., Bejan N.P., Zalamai V.V. Optical spectra of TlGaS crystals // Journal of Luminescence. 2016. V. 172. P. 111-117. https://doi.org/10.1016/j.jlumin.2015.12.001
  25. 25. Xin X., Liu F., Yan X.-Q., Hui W., Zhao X., Gao X., Liu Z.-B., Tian J.-G. Two-photon absorption and non-resonant electronic nonlinearities of layered semiconductor TlGaS // Optics Express. 2018. V. 26. No. 26. P. 33895-33905. https://doi.org/10.1364/OE.26.033895
  26. 26. Mustafaeva S.N. Dielectric properties of TlGa MnS (0 ≤ x ≤ 0.03) single crystals // Inorganic Materials. 2006. V. 42. No. 5. P. 470-473. https://doi.org/10.1134/S0020168506050037
  27. 27. Salomon E., Homolka P., Csete I., Toroi P. Performance of semiconductor dosimeters with a range of radiation qualities used for mammography: A calibration laboratory study // Medical Physics. 2020. V. 47. No. 3. P. 1372-1378. https://doi.org/10.1002/mp.14005
  28. 28. Asadov S.M., Mustafaeva S.N. Effect of composition on charge transport in (TlGaSe)(TlGaS) (0 ≤ x ≤ 1) solid solutions // Inorganic Materials. 2024. V. 60. No. 11. P. 1283-1292. https://doi.org/10.1134/S0020168525700098
  29. 29. Delgado G.E., Mora A.J., Perez F.V., Gonzalez J. Crystal structure of the ternary semiconductor compound thallium gallium sulfide TlGaS // Physica B: Condensed Matter. 2007. V. 391. No. 2. P. 385-388. https://doi.org/10.1016/j.physb.2006.10.030
  30. 30. Ghoniem N.M. Dislocation Dynamics Simulations of Defects in Irradiated Materials. Comprehensive Nuclear Materials. 2nd edition. Elsevier Inc. 2019, https://doi.org/10.1016/B978-0-12-803581-8.11657-1
  31. 31. Martin J.E. Physics for Radiation Protection: A Handbook, 2nd ed, Wiley, New York, Completely Revised and Enlarged. July 2008, 844 p. ISBN 9783527618804
  32. 32. Knoll G.F. Radiation Detection and Measurement, 4th ed. Wiley, New York, Aug 2010, 864 p. ISBN 9780470131480
  33. 33. Kasap S., Kabir M.Z. X-Ray Detectors. In: M. Rudan, R. Brunetti, S. Reggiani (Eds). Springer Handbook of Semiconductor Devices. Springer, Cham. pp. 747- 776. 11 Nov. 2022. https://doi.org/10.1007/978-3-030-79827-7_20
  34. 34. Kabir M.Z., Kasap S. Photoconductors for X-Ray Image Detectors. In: S. Kasap, P. Capper (Eds). Springer Handbook of Electronic and Photonic Materials. Springer, Cham. Ch. 45, pp. 1125-1147. 04 Oct. 2017. https://doi.org/10.1007/978-3-319-48933-9_45
  35. 35. Kabir M.Z. Basic Principles of Solid-State X-Ray Radiation Detector Operation. In: G. Korotcenkov (Eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. 31 Mart 2023. https://doi.org/10.1007/978-3-031-24000-3_1
  36. 36. Asadov S.M., Mustafaeva S.N., Mammadov A.N., Lukichev V.F. Modeling of Structural Properties and Transport Phenomena in Doped Multicomponent 2D Semiconductors // Russian Microelectronics. 2024. V. 53. No. 6. P. 519-542. https://doi.org/10.1134/S106373972460081X
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library