RAS Nano & ITМикроэлектроника Russian Microelectronics

  • ISSN (Print) 0544-1269
  • ISSN (Online) 3034-5480

Development of atomic layer deposition technological platform for the synthesis of micro- and nanoelectronics materials

PII
S0544126925010088-1
DOI
10.31857/S0544126925010088
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 54 / Issue number 1
Pages
76-90
Abstract
This work presents the results of designing, constructing and testing the atomic layer deposition (ALD) platform for the synthesis of various semiconductor, dielectric, metallized and barrier thin-film structures with a thickness of < 100 nm. This ALD platform can be used in the field of micro- and nanoelectronics, with the possibility of in situ monitoring of mass and thickness growth processes with an accuracy of 0.3 ng/cm2 and 0.037 Å/cycle, respectively. In this ALD platform, the number of imported components is minimized due to the use of electronics and vacuum fittings from domestic manufacturers, which in turn will significantly reduce the cost of this type of installation and make atomic layer deposition technology available to most scientific and educational organizations in Russia.
Keywords
атомно-слоевое осаждение молекулярно-слоевое осаждение молекулярное наслаивание тонкие пленки нанотехнологии вакуумное оборудование
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
19

References

  1. 1. Robertson J., Wallace R. High-K materials and metal gates for CMOS applications // Materials Science and Engineering: R: Reports. 2015. V. 88. P. 1–41.
  2. 2. Choi J.H., Mao Y., Chang J.P. Development of hafnium based high-k materials – A review // Materials Science and Engineering: R: Reports. 2015. V. 72. № 6. P. 97–136.
  3. 3. Yeoh A., Madhavan A., Kybert N. et al. Interconnect Stack using Self-Aligned Quad and Double Patterning for 10nm High Volume Manufacturing // 2018 IEEE International Interconnect Technology Conference (IITC). 2018. P. 144–147.
  4. 4. Johnson R.W., Hultqvist. A., Bent S.F. A brief review of atomic layer deposition: from fundamentals to applications // Materials Today. 2014. V. 17. № 5. P. 236–246.
  5. 5. Malygin A.A., Drozd V.E., Malkov A.A., Smirnov V.M. From V. B. Aleskovskii’s “Framework” Hypothesis to the Method of Molecular Layering/Atomic Layer Deposition // Chemical Vapor Deposition. 2015. V. 21. № 10–11–12. P. 216–240.
  6. 6. Suntola T. Atomic Layer Epitaxy // Materials Science Reports. 1989. Vol. 4. Р. 261–312.
  7. 7. Кольцов С.И. Синтез твердых веществ методом молекулярного наслаивания: дис. докт.хим.наук. Ленинград. 1971. 383 с.
  8. 8. Кольцов С.И. Исследование степени гидратации поверхности монокристаллического кремния при различных температурах // Кольцов С.И., Дрозд В.Е., Алесковский В.Б. / Под ред. СССР ДАН. 1976. T. 229. № 5. C. 1145–1147.
  9. 9. Lee Y-S., Choi D-W., Shong B., Oh S., Park J-S. Low temperature atomic layer deposition of SiO2 thin films using di-isopropylaminosilane and ozone // Ceramics International. 2017. V. 43, № 2. P. 2095–2099.
  10. 10. Wang, X., Ghosh, S.K., Afshar-Mohajer M., Zhou H., Liu Y., Han X., Cai J., Zou M., Meng X. Atomic layer deposition of zirconium oxide thin films // Journal of Materials Research. 2020. V. 35. № 7. P. 804–812.
  11. 11. Gieraltowska S., Wachnicki L., Dluzewski P., Witkowski B.S., Godlewski M., Guziewicz E. Atomic Layer Deposition of HfO2 Films Using TDMAH and Water or Ammonia Water // Materials. 2023. V. 16. № 11. P. 4077.
  12. 12. Groner M.D., Fabreguette F.H., Elam J.W., George S.M. Low-Temperature Al2O3 Atomic Layer Deposition Chemistry of Materials. 2004. V. 16. № 4. P. 639–645.
  13. 13. Амашаев Р.Р., Курбанов М.М., Халилов Р.Ш. Программный комплекс для автоматизации процессов атомно-слоевого осаждения // Свидетельство о регистрации программы ЭВМ. № 2024612675 от 01.09.2024.
  14. 14. Wind R.A., George S.M. Quartz Crystal Microbalance Studies of Al2O3 Atomic Layer Deposition Using Trimethylaluminum and Water at 125 °C // The Journal of Physical Chemistry A. 2010. V. 114. № 3. P. 1281–1289.
  15. 15. Amashaev R.R., Alikhanov N.M-R., Ismailov A.M., Abdulagatov I.M. Synthesis of Ultrathin Heteroepitaxial 3C-SiC films by The Thermal Treatment of Molecular Layer Deposition Polyamide Films on Si // Journal of Vacuum Science and Technology. 2022. Vol. 40. № 5. P. 052401–052401.
  16. 16. Steiner J., Schultheiß J., Wang S., Wellmann P.J. Fabrication of SiC-on-Insulator (SiCOI) Layers by Chemical Vapor Deposition of 3C-SiC on Si-in-Insulator Substrates at Low Deposition Temperatures of 1120 °C // Crystals. 2023. V. 13. № 11. P. 1590.
  17. 17. Yao J., Li A., Liu Y., Hu Z., Li M., Yang K., Zhang J., Chen J., Zhang M., Guo Y. SiC-on-insulator based lateral power device and it’ s analytical models // Results in Physics. V. 58. 2024. P. 107477.
  18. 18. Li J., Zhang Q., Wang J. et al. An integrated 3C-silicon carbide-on-insulator photonic platform for nonlinear and quantum light sources // Commun Physics. 2024. V. 7. № 125.
  19. 19. Vinod. K.N., Zorman C.A., Mehregany M. A novel SiC on insulator technology using wafer bonding // Proceedings of International Solid State Sensors and Actuators Conference (Transducers ‘97). 1997. V. 1. P. 653–656.
  20. 20. Lukin D.M., Dory C., Guidry M.A. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics // Nature Photonics. 2020. V. 14. P. 330–334.
  21. 21. Амашаев Р.Р., Исубгаджиев Ш.М., Фараджев Ш.П., Бузин А.В., Ахмедова П.М., Абдулагатов И.М. Способ улучшения роста и адгезии нанопленок меди на подложках кремния с использованием технологии молекулярно-слоевого осаждения: Пат. 2800189 Российской Федерации от 21.11.2022 г.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library