Al Islands on Si(111): Growth Temperature, Morphology and Strain
Table of contents
Share
QR
Metrics
Al Islands on Si(111): Growth Temperature, Morphology and Strain
Annotation
PII
S0544126924040063-1
Publication type
Article
Status
Published
Authors
A. A. Lomov 
Affiliation: Kurchatov Institute
Pages
335-345
Abstract
The comprehensive structural studies of thin island Al films with a thickness of 20–50 nm deposited by magnetron sputtering on Si(111) substrates in an argon plasma at a pressure of 6*10–3 mbar and a temperature from 20 to 500°C are presented. Studies of the morphology and microstructure of the films were carried out using XRD, SEM, EDS and TEM methods. It has been found that most of the islands are Al {001} and Al {111} crystallites with lateral sizes of 10–100 nm, differently conjugated with Si(111) substrate. At room temperature of the substrate, only Al {001} crystallites are epitaxially formed on it. The Al {111} crystallites epitaxially grown on the substrate dominate as the substrate temperature increases about 400°C. The influence of the temperature of the Si(111) substrate on the process of epitaxial growth of crystallites, the dynamics of their shape and structural perfection is shown. It has been found that crystallites epitaxially connected to the substrate experience deformation ε = 7 × 10–3 and ε = –2 × 10–3 for Al {001} and Al {111}, respectively. It has been shown that for thin island Al films on Si(111), the dependence of the number of crystallization centers and the particle growth rate on the supercooling temperature is consistent with the band model of crystallization. At the same time, a shift in the characteristic temperatures for the zone boundaries is observed due to the properties of the substrate. This must be taken into account when engineering the surface morphology and structural perfection of crystallites in Al island magnetron films.
Keywords
алюминий кремний магнетронное распыление эпитаксия морфология микроструктура рентгеновская дифракция РЭМ и ПЭМ микроскопия
Acknowledgment
The work was performed within the framework of the State Assignment of the Valiev Institute of Physics and Technology of the Russian Academy of Sciences of the Ministry of Education and Science of the Russian Federation under the project No. FFNN-2022-0019. Development and research of samples was carried out at the Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences at the expense of the grant of the Russian Science Foundation № 23-79-00022, https://rscf.ru/project/23-79-00022/
Received
12.11.2024
Number of purchasers
0
Views
16
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Ж.И. Алферов. УФН, 172, 1068. 2002. DOI: 10.3367/UFNr.0172.200209e.1068

2. S. Saini, P. Ashok, A. Verma. Appl. Phys. Lett., 124, 011105. 2024. DOI: 10.1063/5.0175803

3. G. Hass, M.H. Francombe, J.L. Vossen. Physics of Thin Films. Advances in Research and Development. (Academic Press, NY, USA. 1982.

4. B.S. Sunil, P. Bellanger, S. Roques, A. Slaoui, A.G. Ulyashin, C. Leuvrey, A.R. Bjorge. 2016 International Renewable and Sustainable Energy Conference (IRSEC). Marrakech, Morocco. 2016. P. 214–219. DOI: 10.1109/IRSEC.2016.7983910

5. W.-S. Liao, Si-Ch. Lee. J. Appl. Phys., 81, 7793. 1997. DOI: 10.1063/1.365389

6. U. Barajas-Valdes, O. Marcelo Suárez. Crystals, 11(5), 492. 2021. DOI: 10.3390/cryst11050492

7. T. Greibe, M. Stenberg, C. Wilson, T. Bauch, V. Shumeiko, P. Delsing. Phys. Rev. Lett., 106, 097001. 2011.

8. M. Tarasov, L. Kuzmin, N. Kaurova. Instrum. Exp. Tech., 52(6), 877. 2009. DOI: 10.1134/S0020441209060220

9. L. Olausson, P. Olausson, E. Lind. Appl. Phys. Lett., 124, 042601. 2024. DOI: 10.1063/5.0182485

10. I.E. Merkulova. J. Phys.: Conf. Ser., 2119, 012121. 2021. DOI: 10.1088/1742-6596/2119/1/012121

11. S.E. Booth, C.D. Marsh, Kanad Mallik, V. Baranauskas, J.M. Sykes, P R. Wilshaw. J. Vac. Sci. Technol. B, 21, 316. 2003. DOI: 10.1116/1.1532025

12. E.A. Khramtsova, A.V. Zotov, A.A. Saranin, S.V. Ryzhkov, A.B. Chub, V.G. Lifshits. Appl. Surf. Sci., 82/83, 576. 1994. DOI: 10.1016/0169-4332(94)90278-X

13. C. Grupp, A. Taleb-Ibrahimi. J. Vac. Sci. Technol. A, 16, 2683. 1998. DOI: 10.1116/1.581400

14. I.V. Markov. Crystal Growth for beginners. 2nd Ed. World Scientific Publishing Co. Pte.Ltd., New Jersey, London, Singapure. 2003.

15. C. Eisenmenger-Sittner. Growth Control and Thickness Measurement of Thin Films, Encyclopedia of Applied Physics. Wiley-VCH Verlag GmbH & Co. KGaA. 2019. DOI: 10.1002/3527600434.eap809

16. A.A. Lomov, D.M. Zakharov, M.A. Tarasov, A.M. Chekushkin, A.A. Tatarintsev, D.A. Kiselev, T.S. Ilyina, A.E. Seleznev. Tech. Phy., 68(7), 833. 2023. DOI: 10.61011/TP.2023.07.56624.83-23

17. J.M. Poate, K.N. Tu, J.W. Mayer. Thin Films–Interdiffusion and Reactions. John Wiley and Sons, Inc. New York, Chichester, Toronto. 1978.

18. R.E. Reed-Hill. Physical Metallurgy Principles. 2-nd Edition. Van Nostrand, New York, USA. 1981.

19. A.W. Fortuin, P.F.A. Alkemade, A.H. Verbruggen, A.J. Steinfort, H. Zandbergen, S. Radelaar. Surface Science, 366(2), 285. 1996. DOI: 10.1016/0039-6028(96)00824-2

20. K. Barmak, K. Coffey. Metallic films for electronic, optical and magnetic applications. Woodhead Publishing Lim., Cambridge, UK. 2013.

21. А.Е. Лейкин, Б.И. Родин. Материаловедение. Высшая школа, М. 1971.

22. B.A. Movchan, and A.V. Demchishin. Phys. Met. Metallogr. 28, 83. 1969.

23. M. Ohring. Materials Science of Thin Films. Deposition and Structure. Academic Press, Hoboken, NJ, USA. 2002.

24. André Anders. Thin Solid Films, 518(15), 4087. 2010. DOI: 10.1016/j.tsf.2009.10.145

25. J.A. Thornton. Ann. Rev. Mater. Sci., 7, 239. 1977. DOI: 10.1146/annurev.ms.07.080177.001323

26. N. Kaiser. Appl. Opt., 41(16), 3053. 2002. DOI: 10.1364/AO.41.003053

27. C. D’Anterroches. Microscopy of Semiconducting Materials 1983, Third Oxford Conference on Microscopy of Semiconducting Materials. St Cathernine’s College, Oxford, 1983. P. 95. DOI: 10.1201/9781003069614

28. M.-A. Hasan, G. Radnoczi, J.-E. Sundgren. Vacuum, 41(4–6), 11221. 1990. DOI: 10.1016/0042–207X(90)93886-N

29. S.C. Tjong, H. Chen. Mater. Sci. and Eng.: R, 45(1), 1. 2004. DOI: 10.1016/j.mser.2004.07.001

30. H.J. Wen, M. Dahne-Prietsch, A. Bauer, M.T. Cuberes, I. Manke, G. Kaindl. J. Vac. Sci. Techn. A, 13, 2399. 1995. DOI: 10.1116/1.579480

31. M. Sosnowski, S. Ramac, W.L. Brown, Y.O. Kim. Appl. Phys. Lett., 65, 2943. 1994. DOI: 10.1063/1.112541

32. P.N.H. Nakashima. The Crystallography of Aluminum and Its Alloys in Encyclopedia of Aluminum and Its Alloys ed. by G.E. Totten, M Tiryakioğlu, O. Kessler. Boca Raton: CRC Press, 2018. P. 488–586. DOI: 10.1201/9781351045636-140000245

33. Y. Horio. Jpn. J. Appl. Phys., 38, 4881. 1999. DOI: 10.1143/JJAP.38.4881

Comments

No posts found

Write a review
Translate