CNOT Quantum Gate Based on Spatial Photonic Qubits Under Resonant Electro-Optical Control
Table of contents
Share
QR
Metrics
CNOT Quantum Gate Based on Spatial Photonic Qubits Under Resonant Electro-Optical Control
Annotation
PII
S0544126924040022-1
Publication type
Article
Status
Published
Authors
A. V. Tsukanov 
Affiliation: Valiev Institute of Physics and Technology of the Russian Academy of Sciences
I. Yu. Kateev
Affiliation: Valiev Institute of Physics and Technology of the Russian Academy of Sciences
Pages
297-310
Abstract
A theoretical model of a quantum node that implements the two-qubit CNOT operation with use of photonic qubits with spatial encoding is considered. Each qubit is represented by a pair of modes supporting an arbitrary superposition of single-photon states. The active element of the node is a single or double quantum dot with a tunable frequency, which coherently exchanges an energy quantum with the modes. The spectral characteristics of the quantum node elements are simulated. The probability of implementation of a controlled inversion of the qubit state is calculated depending on the system parameters.
Keywords
квантовая точка зарядовый кубит вентиль CNOT эффект Ферстера волновод микрорезонатор
Acknowledgment
The work was carried out within the framework of the State assignment of the Valiev Institute of Physics and Technology of the Russian Academy of Sciences of the Ministry of Education and Science of the Russian Federation on the theme No. FFNN-2022-0016 ‘Fundamental and applied research in the field of development of methods for high-precision modelling and control of the element base of quantum computers’
Received
12.11.2024
Number of purchasers
0
Views
20
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Dietrich C.P., Fiore A., Thompson M.G., Kamp M., and Höfling S. GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits // Las. Photon. Rev. 2016. V. 10. P. 870.

2. Ramakrishnan R.K., Ravichandran A.B., Mishra A., Kaushalram A., Hegde G., Talabattula S., Rohde P.P. Integrated photonic platforms for quantum technology: A review // ISSS Journal of Micro and Smart Systems. 2023. V. 12. P. 83.

3. Adcock J.C., Bao J., Chi Y., Chen X., Bacco D., Gong Q., Oxenløwe L.K., Wang J., Ding Y. Advances in silicon quantum photonics // IEEE Journal of Selected Topics Of Quantum Electronics. 2021. V. 27. P. 1.

4. Wan N.H., Lu T.-J., Chen K.C., Walsh M.P., Trusheim M.E., De Santis L., Bersin E.A., Harris I.B., Mouradian S.L., Christen I.R., Bielejec E.S., Englund D. Large-scale integration of artificial atoms in hybrid photonic circuits // Nature. 2020. V. 583. P. 226.

5. Atatüre M., Englund D., Vamivakas N., Lee S.-Y., Wrachtrup J. Material platforms for spin- based photonic quantum technologies // Nat. Rev. Mat. 2018. V. 3. P. 38.

6. Ruf M., Wan N.H., Choi H., Englund D., Hanson R. Quantum networks based on color centers in diamond // Journ. Appl. Phys. 2021. V. 130. P. 070901.

7. Elshaari A.W., Pernice W., Srinivasan K., Benson O., Zwiller V. Hybrid integrated quantum photonic circuits // Nat. Photon. 2020. V. 14. P. 285.

8. Davanco M., Liu J., Sapienza L., Zhang C.-Z., Cardoso J.V.M., Verma V., Mirin R., Nam S.W., Liu L., Srinivasan K. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices // Nat. Commun. 2017. V. 8. P. 889.

9. Jiang P., Balram K.C. Suspended gallium arsenide platform for building large scale photonic integrated circuits: passive devices // Opt. Expr. 2020. V. 28. P. 12262.

10. Blumenthal D.J., Ieee F., Heideman R., Geuzebroek D., Leinse A., Roeloffzen C. Silicon nitride in silicon photonics // Proc. IEEE. 2018. V. 106. P. 2209.

11. Chanana A., Larocque H., Moreira R., Carolan J., Guha B., Melo E.G., Anant V., Song J., Englund D., Blumenthal D.J., Srinivasan K., Davanco M. Ultra-low loss quantum photonic circuits integrated with single quantum emitters // Nat. Commun. 2022. V. 13. P. 7693.

12. Zhong H.S., Wang H., Deng Y.-H., Chen M.-C., Peng L.-C., Luo Y.-H., Qin J., Wu D., Ding X., Hu Y., Hu P., Yang X.-Y., Zhang W.-J., Li H., Li Y., Jiang X., Gan L., Yang G., You L., Wang Z., Li L., Liu N.-L., Lu C.-Y., Pan J.-W. Quantum computational advantage using photons // Science. 2020. V. 370. P. 1460.

13. Arrazola J.M., Bergholm V., Brádler K., Bromley T.R., Collins M.J., Dhand I., Fumagalli A., Gerrits T., Goussev A., Helt L.G., Hundal J., Isacsson T., Israel R.B., Izaac J., Jahangiri S., Janik R., Killoran N., Kumar S.P., Lavoie J., Lita A.E., Mahler D.H., Menotti M., Morrison B., Nam S.W., Neuhaus L., Qi H.Y., Quesada N., Repingon A., Sabapathy K.K., Schuld M., D. Su, Swinarton J., Száva A., Tan K., Tan P., Vaidya V.D., Vernon Z., Zabaneh Z., Zhang Y. Quantum circuits with many photons on a programmable nanophotonic chip // Nature. 2021. V. 591. P. 54.

14. Qiang X., Zhou X., Wang J., Wilkes C.M., Loke T., O’Gara S., Kling L., Marshall G.D., Santagati R., Ralph T.C., Wang J.B., O’Brien J.L., Thompson M.G., Matthews J.C.F. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing // Nat. Photon. 2018. V. 12. P. 534.

15. Wang M., Yan F. Generation of four-photon polarization entangled state based on Einstein-Podolsky-Rosen entanglers // Eur. Phys. J. D. 2014. V. 68. P. 29.

16. Milburn G.J. Quantum optical Fredkin gate // Phys. Rev. Lett. 1989. V. 62. P. 2124.

17. Kok P., Munro W.J., Nemoto K., Ralph T.C., Dowling J.P., Milburn G.J. Linear optical quantum computing with photonic qubits // Rev. Mod. Phys. 2007. V. 79. P. 135.

18. O’Brien J.L. Optical quantum computing // Science. 2007. V. 318. P. 1567.

19. Knill E., Laflamme R., Milburn G.J. A scheme for efficient quantum computation with linear optics // Nature. 2001. V. 409. P. 46.

20. Laing A., Peruzzo A., Politi A., Verde M.R., Halder M., Ralph T.C., Thompson M.G., O’Brien J.L. High-fidelity operation of quantum photonic circuits // Appl. Phys. Lett. 2010. V. 97. P. 211109.

21. Pooley M.A., Ellis D.J.P., Patel R.B., Bennett A.J., Chan K.H.A., Farrer I., Ritchie D.A., Shields A.J. Controlled-NOT gate operating with single photons // Appl. Phys. Lett. 2012. V. 100. P. 211103.

22. Lee J.-M., Lee W.-J., Kim M.-S., Cho S.W., Ju J.J., Navickaite G., Fernandez J. Controlled-NOT operation of SiN-photonic circuit using photon pairs from silicon-photonic circuit // Opt. Commun. 2022. V. 509. P. 127863.

23. Цуканов А.В., Катеев И.Ю. Квантовые вычисления на квантовых точках в полупроводниковых микрорезонаторах. Часть I. // Микроэлектроника. 2014. Т. 43. С. 323.

24. Цуканов А.В., Катеев И.Ю. Квантовые вычисления на квантовых точках в полупроводниковых микрорезонаторах. Часть II. // Микроэлектроника. 2014. Т. 43. С. 403.

25. Цуканов А.В., Катеев И.Ю. Квантовые вычисления на квантовых точках в полупроводниковых микрорезонаторах. Часть III. // Микроэлектроника. 2015. Т. 44. С. 79.

26. Yeh C., Shimabukuro F.I. The essence of dielectric waveguides. Springer, 2008. 522 p.

27. Prorok S., Petrov A., Eich M., Luo J., Jen A.K.-Y. Configurable silicon photonic crystal waveguides // Appl. Phys. Lett. 2013. V. 103. P. 261112.

28. Yariv A., Xu Y., Lee R.K., Scherer A. Coupled-resonator optical waveguide: a proposal and analysis // Opt. Lett. 1999. V. 24. P. 711.

29. Baba T., Kawasaki T., Sasaki H., Adachi J., Mori D. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide // Opt. Expr. 2008. V. 16. P. 9245.

30. Kondo K., Shinkawa M., Hamachi Y., Saito Y., Arita Y., Baba T. Ultrafast slow-light tuning beyond the carrier lifetime using photonic crystal waveguides // Phys. Rev. Lett. 2013. V. 110. P. 053902.

31. Debnath K., Welna K., Ferrera M., Deasy K., Lidzey D.G., O’Faolain L. Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide // Opt. Lett. 2013. V. 38. P. 154.

32. Zang X., Zhou T., Cai B., Zhu Y. Single-photon transport properties in an optical waveguide coupled with a Λ-type three-level atom // J. Opt. Soc. Am. B. 2013. V. 30. P. 1135.

33. Cerf N.J., Adami C., Kwiat P.G. Optical simulation of quantum logic // Phys. Rev. A. 1998. V. 57. P. R1477.

34. Reck M., Zeilinger A. Experimental realization of any discrete unitary operator // Phys. Rev. Lett. 1994. V. 73. P. 58.

35. Chuang I.L., Yamamoto Y. A simple quantum computer // Phys. Rev. A. 1995. V. 52. P. 3486.

36. Johne R., Fiore A. Proposal for a two-qubit quantum phase gate for quantum photonic integrated circuits // Phys. Rev. A. 2012. V. 86. P. 063815.

37. Chang J.-T., Zubairy M.S. Three-qubit phase gate based on cavity quantum electrodynamics // Phys. Rev. A. 2008. V. 77. P. 012389.

38. Shu J., Zou X.-B., Xiao Y.-F., Guo G.-C. Quantum phase gate of photonic qubits in a cavity QED system // Phys. Rev. A. 2007. V. 75. P. 044302.

39. Головинский П.А. Влияние эффекта Штарка на резонансный перенос возбуждения между квантовыми точками // ФТП. 2014. Т. 48. С. 781.

40. Цуканов А.В. Принцип измерения электронной населенности квантовой точки с помощью однофотонного транзистора на основе массива квантовых точек // Квант. электроника. 2021. Т. 51. № 8. С. 718–726.

41. Цуканов А.В., Катеев И.Ю. Взаимодействие массива одноэлектронных квантовых точек с полем микрорезонатора с учетом кулоновских корреляций // Квантовая электроника. 2022. Т. 52. № 5 С. 474–481

42. Tsukanov A.V., Kateev I. Yu. Optical measurement of a quantum dot state in a microdisk by a Stark transducer // Laser Phys. Lett. 2022. V. 19. P. 086201

43. Bayindir M., Temelkuran B., Ozbay E. Tight-binding description of the coupled defect modes in three-dimensional photonic crystals // Phys. Rev. Lett. 2000. V. 84. P. 2140.

44. Guha B., Marsault F., Cadiz F., Morgenroth L., Ulin V., Berkovitz V., Lemaître A., Gomez C., Amo A., Combrié S., Gérard B., Leo G., Favero I. Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106 // Optica. 2017. V. 4. P. 218.

Comments

No posts found

Write a review
Translate