Development of the Ge-MDST instrument structure with an induced p-type channel
Table of contents
Share
QR
Metrics
Development of the Ge-MDST instrument structure with an induced p-type channel
Annotation
PII
S0544126924030077-1
Publication type
Article
Status
Published
Authors
N. A. Alyabina 
Affiliation: Nizhegorodsky State University named after N.I. Lobachevsky
V. G. Shengurov
Affiliation: Nizhegorodsky State University named after N.I. Lobachevsky
Pages
259-264
Abstract
The conditions for the growth of n-type Ge conduction layers by the HW CVD method with the parameters required to create a Ge-TIR transistor with an induced p-type channel are determined. The conditions of deposition by electron beam deposition and subsequent annealing of layers of a high-k dielectric ZrO2:Y2O3 are optimized, allowing to achieve a leakage current of 5 × 10–6 A/cm2. For the developed instrument structure, some parameters of the Ge-TIR transistor were calculated, such as the channel length, the maximum voltage between the drain and the source, and the breakdown voltage.
Keywords
МДП-транзистор Ge/Si(001) HW CVD high-k диэлектрик
Acknowledgment
The work was supported by the Russian Science Foundation (22-22-00866).
Received
27.10.2024
Number of purchasers
0
Views
27
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References

1. Неизвестный И.М. Германиевый полевой транзистор с изолированным затвором (Ge МДПТ) // Вестник СибГУТИ. 2009. № 3. С. 5—9.

2. Goley P.S., Mantu K.H. Germanium Based Field-Effect Transistor: Challenges and Opportunities // Materials. 2014. № 7. С. 2301—2339.

3. Yi S.H., Chang-Liao K.S., Wu T.Y., Hsu C.W., Huang J. High performance Ge pMOSFETs with HfO2/Hf-Cap/GeOx gate stack and suitable post metal annealing treatments // IEEE Trans Electron Devices. 2017. № 37. P. 544—547.

4. Liu H., Han G., Liu Y., Hao Y. High Mobility Ge pMOSFETs with ZrO2 Dielectric: Impacts of Post Annealing Nanoscale Research Letters. 2019. V. 14. P. 202.

5. Shin Y., Chung W., Seo Y., Lee C.H., Sohn D.K., Cho B.J. Demonstration of Ge pMOSFETs with 6 Å EOT using TaN/ZrO2/Zr-cap/n-Ge(100) gate stack fabricated by novel vacuum annealing and in-situ metal capping method // IEEE Symposium on VLSI Technology. 2014. P. 82—83.

6. Lin C.M., Chang H.C., Chen Y.T., Wong I.H., Lan H.S., Luo S.J., Lin J.Y., Tseng Y.J., Liu C.W., Hu C., Yang F.L. Interfacial layer-free ZrO2 on Ge with 0.39-nm EOT, κ ~ 43, ~2 × 10–3 A/cm2 gate leakage, SS = 85 mV/dec, Ion/Ioff = 6 × 105, and high strain response. Electron Devices Meeting (IEDM) // 2012 IEEE International. 2012. P. 23.2.1—23.2.4.

7. Henkel C., Abermann S., Bethge O., Pozzovivo G., Klang P., Reiche M., Bertagnolli E. Ge p-MOSFETs with scaled ALD La2O3/ZrO2 gate dielectrics // IEEE Trans Electron Devices. 2010. V. 57. P. 3295—3302.

8. Seo Y., Lee T.I., Yoon C.M., Park B.E., Hwang W.S., Kim H. The impact of an ultrathin Y2O3 layer on GeO2 passivation in Ge MOS gate stacks // IEEE Trans Electron Devices. 2017. V. 64. P. 3303—3307.

9. Kamata Y. High-k/Ge MOSFETs for Future Nanoelectronics // Materials today. 2008. V. 11. Nos. 1-2 P. 31—38.

10. Wu N., Zhang Q., Chan D.S.H., Balasubramanian N., Zhu C. Gate-First germanium nMOSFET with CVD HfO2 gate dielectric and silicon surface passivation // IEEE Electron Device Letters. 2006. V. 27. № 6. P. 479—491.

11. Kamata Y. High-k/Ge MOSFETs for future nanoelectronics // Materials Today. 2008. V. 11. № 1. P. 30—38.

12. Buzynin A.N., Osiko V.V., Buzynin Y.N. Fianite: a multipurpose electronics material // Bulletin of the Russian Academy of Sciences: Physics. 2010. V. 74. № 7. P. 1027—1033.

13. Buzynin A.N., Buzynin Y.N., Panov V.A. Applications of Fianite in Electronics. Advances in OptoElectronics. Vol. 2012. P. 23.

14. Buzynin Y., Shengurov V., Zvonkov B., Buzynin A., Denisov S., Baidus N., Drozdov M., Pavlov D., Yunin P. GaAs/Ge/Si Epitaxial Substrates: Development and Characteristics. Green and Sustainable Chemistry. 2017. V. 7. № 3. 015304.

15. Титова А.М., Денисов С.А., Чалков В.Ю., Алябина Н.А., Здоровейщев А.В., Шенгуров В.Г. Распределение концентрации носителей заряда в эпитаксиальных слоях Ge и GeSn, выращенных на n+-Si(001)-подложках // Физика и техника полупроводников. 2022. V. 56. № 9 P. 339—343.

16. Bean J.C., Leamy H.J., Poate J.M., Rozgonyi G.A., Sheng T.T., Williams J.S., Celler G.K. Epitaxial laser crystallization of thin‐film amorphous silicon // Applied Physics Letters. 1978. V. 33. P. 227—230.

17. Никифоров А.И., Кантер Б.З., Стенин С.И. Получение многослойных кремниевых структур методом молекулярно-лучевой эпитаксии // Электронная промышленность. 1989. № 6. P. 3—5.

Comments

No posts found

Write a review
Translate