Проведено теоретическое исследование фотоэлектрических параметров неорганических солнечных элементов на основе гетеропереходов ZnO/Cu2O и ZnO/CuO для повышения эффективности преобразования энергии. Исследовано влияние толщины, концентрации носителей заряда и ширины запрещенной зоны пленок Cu2O и CuO, а также ZnO на фотоэлектрические параметры солнечных элементов. Результаты моделирования показали, что на эффективность солнечных элементов существенно влияют контактная разность потенциалов, диффузионная длина неосновных носителей заряда, величина генерируемого фототока и скорость рекомбинации. Получена максимальная эффективность солнечного элемента на основе ZnO/Cu2O, равная 10.63%, которая достигается при ширине запрещенной зоны, толщине и концентрации носителей заряда в Cu2O, равных 1.9 эВ, 5 мкм и 1015 см–3 и ширине запрещенной зоны, толщине и концентрации носителей заряда в ZnO, равных 3,4 эВ, 20 нм и 1019 см–3, а также величине смещения краев зон проводимости 0.8 эВ. Для солнечного элемента на основе ZnO/CuO получена максимальная эффективность, равная 18.27%, при ширине запрещенной зоны, толщине и концентрации носителей заряда в CuO, равных 1.4 эВ, 3 мкм и 1017 см–3, а также величине смещения краев зон проводимости 0.03 эВ. Полученные результаты моделирования солнечных элементов могут быть использованы при разработке и изготовлении недорогих и эффективных фотоэлектрических структур.
Проведено осаждение пленок Cu2O методом высокочастотного (ВЧ) магнетронного распыления в бескислородной среде при комнатной температуре. Исследовано влияние мощности и давления в камере на скорость осаждения, структурные и оптические свойства пленок Cu2O. Показано, что зависимость скорости осаждения пленок Cu2O от мощности распыления имеет практически линейный характер и незначительно возрастает при увеличении давления аргона в камере. Получено, что все пленки Cu2O имеют преимущественно нанокристаллическую структуру, состоящую из столбчатых зерен, средний размер которых возрастает от 10 до 30 нм при увеличении мощности распыления от 25 до 100 Вт и давления в камере от 3·10–3 до 7·10–3 мбар. При этом пленки Cu2O имеют относительно гладкую поверхность со средней шероховатостью в диапазоне от 4.5 до 5.9 нм. Установлено, что для осаждения пленок Cu2O с наибольшим размером зерен и низкой шероховатостью поверхности оптимальной является мощность распыления 75 Вт и давление в камере 5·10–3 мбар. Показано, что при данном режиме магнетронного напыления пленка Cu2O имеет два основных дифракционных пика, которым соответствуют ориентации кристаллических плоскостей (111) и (200) для кубической фазы Cu2O, а также высокое оптическое поглощение до порядка 600 нм и ширину запрещенной зоны 2.18 эВ. Проведено изготовление макетов солнечных элементов на основе гетероперехода ZnO/Cu2O методом магнетронного распыления при комнатной температуре и исследованы их вольт-амперные характеристики. Полученные результаты могут быть использованы при разработке структур и технологических процессов формирования солнечных элементов на стеклянной и гибкой подложках с помощью метода магнетронного распыления.
Методом магнетронного распыления в режиме средних частот (MF) получены пленки ITO на стеклянных подложках при комнатной температуре в бескислородной среде. Проведено исследование влияния мощности магнетронного распыления на электрофизические свойства и морфологию поверхности пленок ITO. Показано, что скорость осаждения пленки ITO линейно зависит от мощности магнетронного распыления в режиме MF. Получено, что пленки ITO имеют преимущественно нанокристаллическую структуру при мощности магнетронного распыления больше 100 Вт. Увеличение мощности распыления приводит к возрастанию шероховатости поверхности от 13.5 до 24.6 нм и размера зерен от 11.7 до 27.5 нм в пленке ITO. Минимальное удельное сопротивление пленок ITO составило 6.82 × 10–4 Ом см при концентрации и подвижности носителей заряда 2.48 × 1020 см–3 и 36.8 см2/В с, которое соответствует оптимальной мощности магнетронного распыления 200 Вт. Полученные результаты соответствуют высокому уровню значений поверхностного сопротивления для пленок ITO (34.1 Ом/□), которые могут использоваться при формировании прозрачных проводящих электродов в солнечных элементах и мемристорах, как на стеклянной, так и на гибкой подложках.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации