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МОДЕЛИРОВАНИЕ

1. ВВЕДЕНИЕ

Модель Дилла и соответствующие ей два диф-
ференциальных уравнения первого порядка 
в  частных производных, описывающие динамику 
экспонирования слоя позитивного фоторезиста, 
широко используются для численного моделирова-
ния процесса фотолитографии (см., например, [1]).  
С другой стороны, подобные уравнения ранее были 
предложены в литературе для описания динамики 
фотохимических процессов в  слоях, содержащих 
фотоактивные компоненты. Более того, в частном 
случае отсутствия поглощения другими компо-
нентами было получено аналитическое решение 
этих уравнений. Интерес также представляют ре-
зультаты, касающиеся сведения уравнений Дилла 
к обыкновенным дифференциальным уравнениям 
первого порядка.

Настоящая работа посвящена краткому изло-
жению эволюции моделей экспонирования фото-
активного слоя, рассмотрению частного случая, 
в  котором удается получить аналитическое реше-
ние системы двух дифференциальных уравнений 
первого порядка в  частных производных, а  также 
сведению этих уравнений к  обыкновенным диф-
ференциальным уравнениям первого порядка. 
В  последнем разделе предложена процедура об-
работки экспериментальной зависимости коэф-
фициента пропускания слоя позитивного фото-

резиста, лежащего на оптически согласованной 
подложке, от времени экспонирования с  целью 
получения численных значений коэффициентов 
модели Дилла. В  предложенной процедуре для 
увеличения точности решения используется упо-
мянутое выше обыкновенное дифференциальное 
уравнение первого порядка.

2. ЭВОЛЮЦИЯ МОДЕЛЕЙ 
ЭКСПОНИРОВАНИЯ  

ФОТОАКТИВНОГО СЛОЯ

Экспоненциальный закон ослабления интен-
сивности света при прохождении через поглоща-
ющую среду был экспериментально установлен 
П. Бугером в 1729 г., его теоретическое обоснова-
ние было получено И. Ламбертом в 1760 г., а связь 
между коэффициентом поглощения и концентра-
цией поглощающих молекул в растворе была уста-
новлена А. Бером в  1852 г. Соответствующий за-
кон уменьшения интенсивности света в среде I(x) 
носит название закона Бугера–Ламберта–Бера

d
d
I x

x
I x n

( )
( )= −κ ,                           (1)

где κ – молекулярный коэффициент поглощения 
(м2), который также называется сечением погло-
щения излучения одной молекулой; n – концен-
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трация поглощающих молекул (м–3). Отметим, что 
уравнение (1) соответствует случаю, когда взаимо-
действие света с поглощающей молекулой не при-
водит к ее изменению (например, фотораспаду).

В 1922 г. Р. Вегшайдер опубликовал обширную 
работу по кинетике фотохимических реакций [2]. 
В ней, в частности, была рассмотрена задача про-
хождения света через слой вещества, образован-
ного фотоактивными молекулами и невзаимодей-
ствующим со светом компонентом (матрицей). 
Предполагалось, что поглощение света осущест-
вляется только фотоактивными молекулами, кото-
рые в результате фотохимической реакции распа-
даются, причем продукты распада уже не являются 
фотоактивными и никак не влияют на прохожде-
ние света. Для интенсивности света и концентра-
ции фотоактивных молекул была предложена си-
стема уравнений в частных производных:
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где φ – выход реакции распада фотоактивных мо-
лекул в результате поглощения света (Дж–1).

Таким образом, к  уравнению (1) Вегшайдер 
добавил дифференциальное уравнение, описы-
вающее скорость уменьшения концентрации фо-
тоактивных молекул. В  результате процесс стал 
не только пространственно неоднородным, но, 
в отличие от предыдущего случая, еще и нестаци-
онарным, что обусловило использование для его 
описания системы дифференциальных уравнений 
в частных производных.

Отметим, что фактически такая же фотохи-
мическая модель была впоследствии предложена 
в  работе К. Херрика [3] для позитивного диазо-
типного процесса. Для плотности фотоактивных 
молекул, проинтегрированной по толщине слоя, 
в указанной работе приведены дифференциальные 
уравнения (написанные, впрочем, не вполне кор-
ректно). Можно показать, что эти уравнения после 
ряда преобразований приводятся к уравнениям (2).

В приложении к работе [4] со ссылкой на част-
ное сообщение 1947  года известного американ-
ского физика Дж. Кирквуда (J. G. Kirkwood) без 
комментариев приводится система уравнений для 
описания фотохимической кинетики в слое с уче-
том поглощения света матрицей, в которой нахо-
дятся фотоактивные молекулы:
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где µ – коэффициент поглощения света матрицей. 
Указанное слагаемое делает модель Кирквуда бо-

лее адекватной для описания фотохимической ки-
нетики в реальных фотоактивных слоях.

В той же работе изложена модель самого К. Хер-
рика, в  которой, кроме поглощения света матри-
цей, учитывается также поглощение света продук-
тами распада фотоактивных молекул. Нетрудно 
показать, что в интересующем нас случае n(x, 0) = 
= n0, типичном для слоев фоторезиста, уравнения 
Херрика сводятся к уравнениям Кирквуда с неко-
торыми эффективными коэффициентами µ и κ.

Наконец, в  1973  году Ф. Дилл и  Э. Нойройтер 
представили доклад на конференции Solid-State 
Device Research [5], а в 1974–1975 годах опублико-
вали несколько статей, в которых изложили модель 
экспонирования позитивного фоторезиста, состо-
ящего из пленкообразующего компонента (смолы) 
и  ингибитора растворения этой смолы (фотоак-
тивного компонента). (Отметим, что в литературе 
эта модель называется моделью Дилла.) Модель 
включает два дифференциальных уравнения  
(см., например, [6]):
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где M – относительная концентрация ингибитора, 
A – оптическое поглощение за счет ингибитора, B –  
оптическое поглощение за счет смолы, C характе-
ризует оптическую чувствительность ингибитора. 
Фактически, это уравнения Кирквуда, причем, 
в  типичном для фотолитографии предположении 
n(x, 0) = n0, имеют место соотношения, связываю-
щие коэффициенты двух моделей,

M x t
n x t

n
A n B C( , )

( , )
; ; ;= = = =

0
0κ µ ϕκ   A = κn0,   B = µ,   C = φκ.    (5)

Интересно отметить, что в работе [7] было по-
казано, как уравнения Дилла можно получить из 
уравнений, фактически полученных Херриком 
в работе [4].

Большим достоинством модели Дилла, обеспе-
чившим ей широкое распространение в  програм-
мах моделирования процесса фотолитографии, 
является то, что коэффициенты A, B и C считаются 
параметрами модели. Их значения могут быть по-
лучены с помощью процедуры подгонки решения 
этих уравнений к  экспериментальной зависимо-
сти, например, коэффициента пропускания плен-
ки фоторезиста от дозы экспозиции. В оставшейся 
части статьи все преобразования мы будем прово-
дить для системы уравнений (4).

Важно подчеркнуть, что приведенные выше си-
стемы уравнений относятся только к  полубеско-
нечной среде или к слою, лежащему на оптически 
согласованной (без отражения от интерфейса) под-
ложке. Если оптическое согласование с подложкой 
отсутствует, то в эту систему необходимо добавить 
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уравнение, описывающее пространственное рас-
пределение интенсивности света в слое с учетом ин-
терференции прямой волны с волнами, отраженны-
ми от верхнего и нижнего (нижних) интерфейсов.

3. АНАЛИТИЧЕСКОЕ РЕШЕНИЕ  
УРАВНЕНИЙ ВЕГШАЙДЕРА

Как показано в работе [2], уравнения (2) имеют 
аналитическое решение. Поскольку в  указанной 
работе описание процедуры получения этого ре-
шения довольно громоздкое и занимает две стра-
ницы, в  Приложении А  приведена более простая 
последовательность преобразований, результатом 
которой является обыкновенное дифференциаль-
ное уравнение Ферхюльста, имеющее аналитиче-
ское решение:
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Подстановка этого решения в  уравнение Вег-
шайдера для интенсивности после несложных пре-
образований дает аналитическое решение и  для 
интенсивности:
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где T(x, t) коэффициент пропускания фотоактив-
ного слоя толщиной x в  момент времени t, скор-
ректированный на отражение от интерфейса воз-
дух-слой.

Наконец, для величины локальной дозы экспо-
зиции

E x t t I x t I x t
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также можно получить аналитическое решение

E x t
C

Ax CI t( , ) ln{ exp( )[exp( ) ]}= + − − =1
1 10

	 = + − −1
1 10C

Ax CE tln{ exp( )[exp( ( )) ]},	 (9)

где E0(t) = I0t.
Решения (6), (7) и  (9) могут использоваться 

в  качестве тестовых для верификации программ 
численного решения уравнений Дилла в  частном 
случае B = 0.

4. ПЕРЕХОД К ОБЫКНОВЕННЫМ  
ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ

Для численного решения уравнений Дилла была 
предложена конечно-разностная схема, которая 
заключалась в  поочередном решении простейших 

конечно-разностных уравнений для M (при фикси-
рованном распределении I(x)) и для I (при фикси-
рованном распределении M(x)) (см., например, [8]). 
Такая схема имеет низкую точность и, кроме того, 
требует согласованного подбора пространственно-
го и  временного шагов. Преобразование уравне-
ний Дилла к  обыкновенным дифференциальным 
уравнениям позволяет использовать более точные 
разностные схемы (см., например, [9]) и устраняет 
проблему согласования шагов.

В  приложении к  работе [4] без вывода при-
ведено дифференциальное уравнение, которое 
Дж. Кирквуд получил для M(x, t). В обозначениях 
модели Дилла это уравнение имеет вид:
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В  Приложении Б показано, что с  помощью 
последовательности преобразований это уравне-
ние может быть приведено ко второму уравнению 
Дилла. Поскольку эти преобразования обратимы, 
уравнение (10) действительно может быть получе-
но из уравнений Дилла.

Проинтегрируем уравнение (10) по времени
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продифференцируем полученное уравнение по x
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и  подставим в  него выражение для интеграла из 
уравнения (10). В результате получаем обыкновен-
ное дифференциальное уравнение для относитель-
ной концентрации фотоактивного компонента 
(при этом t – параметр):

d
d

ln ( , )
ln ( , ) [ ( , )]

M x t
x

B M x t A M x t+ − − =1 0  (13)

с начальным условием

M t CI t( , ) exp( )0 0= − .                   (14)

Будем называть уравнение (13) с начальным ус-
ловием (14) уравнением Кирквуда.

Из второго уравнения Дилла можно получить 
соотношение между M(x, t) и E(x, t)

M x t CE x t( , ) exp[ ( , )]= − .               (15)
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Подстановкой этого выражения в  (14) можно 
получить обыкновенное дифференциальное урав-
нение для локальной дозы экспозиции (при этом 
t – параметр)

d
d

E x t
x

A
C

CE x t BE x t
( , )

{ exp[ ( , )]} ( , )= − − − −1    (16)

с начальным условием
E t I t( , )0 0= .                           (17)

Отметим, что уравнение (16) было получено 
в работе [4] другим способом, поэтому вместе с на-
чальным условием (17) будем называть его уравне-
нием Херрика.

Поскольку функции M(x, t) и  E(x, t) связаны 
простым соотношением (15), для получения рас-
пределения M(x) при заданном t можно использо-
вать любое из полученных уравнений.

5. ПРИМЕНЕНИЕ  
ДЛЯ ЭКСПЕРИМЕНТАЛЬНОЙ  

ХАРАКТЕРИЗАЦИИ ФОТОХИМИЧЕСКИХ 
СВОЙСТВ ПОЗИТИВНЫХ ФОТОРЕЗИСТОВ

Характеризация фотохимических свойств по-
зитивного фоторезиста заключается в нахождения 
значений коэффициентов A, B и  C. Эксперимен-
тально измеряемой оптической характеристикой 
слоя фоторезиста толщиной d, лежащего на оп-
тически согласованной подложке, является зави-
симость его коэффициента пропускания от дозы 
(или времени) экспонирования на длине волны 
актиничного излучения ([10]). Выражение для 
указанного коэффициента пропускания, скоррек-
тированного на отражение от интерфейса воздух-
слой, можно получить путем интегрирования пер-
вого уравнения Дилла ([7])

T t
I d t

I
x AM x t B x A

d

( )
( , )

exp [ ( , ) ] exp [ exp[= = − +











= − −∫

0
0

d d CCE x t B
d

( , )] ]+











∫
0

T t
I d t

I
x AM x t B x A

d

( )
( , )

exp [ ( , ) ] exp [ exp[= = − +











= − −∫

0
0

d d CCE x t B
d

( , )] ]+











∫
0

.        (18)

Известно ([7]), что коэффициенты пропуска-
ния, полученные в двух предельных случаях,
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позволяют сразу определить два параметра модели 
Дилла:
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d
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∞

1 1 1

0
ln , ln   A

d
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B
d T

= =∞

∞

1 1 1

0
ln , ln .               (21)

Для определения параметра C в работе [7] было 
предложено вычислять скорость изменения коэф-
фициента пропускания в момент времени t = 0 из 
экспериментальных данных. Действительного, из 
первого интегрального выражения для коэффици-
ента пропускания и второго уравнения Дилла сле-
дует, что
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Отсюда легко получить, что в  начальный мо-
мент времени

C
T t

t
A B

AI T Tt

= +
−=

d
d

( )
( )0 0 0 01

.              (23)

Полученные таким образом значения коэффи-
циентов A, B и  C используются в  работе [7] в  ка-
честве начального приближения для переменных 
в  итерационной процедуре минимизации сред-
неквадратичного отклонения расчетной зависимо-
сти Tcalc(t) от экспериментальной, которая включа-
ет в себя многократное решение уравнений Дилла.

Можно предложить более экономный способ 
определения коэффициентов A, B и C. Будем счи-
тать, что для конкретной экспериментальной за-
висимости Texpt(t) величины коэффициентов A и B 
точно определяются формулами (21), а подгонка 
расчетной зависимости Tcalc(t) к эксперименталь-
ной используется для определения величины 
коэффициента C, например, вычисленной по 
формуле (23). Далее, при некотором значении t*,  
соответствующем, например, эксперименталь-
ному значению коэффициента пропускания 
0 5. ( )min maxT Texpt expt+ , решается уравнение Кирквуда 
или Херрика для пробного значения коэффици-
ента C с одновременным вычислением интеграла 
(18), вычисляется значение T(t*) и  сравнивается 
с экспериментально полученным значением. Если 
теоретическое значение коэффициента меньше 
экспериментального значения, то увеличивают 
значение коэффициента C и повторяют процеду-
ру. В противном случае значение коэффициента C 
уменьшается. Процедуру поиска решения можно 
оптимизировать, используя один из методов, из-
ложенных, например, в [11].

Описанную процедуру следует повторить не-
сколько раз для экспериментальных кривых Texpt(t), 
снятых в разных точках подложки, чтобы опреде-
лить средние значения коэффициентов и их сред-
неквадратичные отклонения.
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ЗАКЛЮЧЕНИЕ

В статье проведен анализ ряда работ, посвящен-
ных моделированию процесса экспонирования фо-
тоактивного слоя, лежащего на оптически согласо-
ванной подложке. Показана связь уравнений Дилла 
с ранее полученными системами уравнений. После-
довательно рассмотрены способы сведения систе-
мы двух уравнений Дилла в  частных производных 
к обыкновенным дифференциальным уравнениям, 
точность численного решения которых можно лег-
ко контролировать. Предложена процедура исполь-
зования таких уравнений для характеризации фото-
химических свойств позитивных фоторезистов.
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ПРИЛОЖЕНИЯ 

ПРИЛОЖЕНИЕ А

Второе уравнение Вегшайдера (2) можно легко 
преобразовать к виду

∂
∂

+ =ln ( , )
( , )

M x t
t

CI x t 0.            (А‑1)

Если прибавить к обеим сторонам этого уравне-
ния слагаемое –CI0, где I0 = I(0, t) – интенсивность 
падающего на слой фоточувствительного слоя из-
лучения с коррекцией на отражение от интерфейса 
воздухслой, то получим уравнение
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Поскольку в  уравнениях Вегшайдера B = 0, 
имеет место простое соотношение между произво-
дными

∂
∂

= − = ∂
∂

M x t
t

CM x t I x t
C
A

I x t
x

( , )
( , ) ( , )

( , ).   (А‑3)

Если отсюда выразить производную по x через 
производную по t и полученное выражение подста-
вить под интеграл в уравнении (А‑2), то получим 
простое дифференциальное уравнение
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M x t A x M x t CI
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0

0,    (А‑4)

интегрирование по времени которого с использо-
ванием начального условия M(x′, 0) = 1 приводит 
к уравнению

ln ( , ) [ ( , ) ]M x t A x M x t CI t
x

+ ′ ′ − = −∫ d 1
0

0 .   (А‑5)

Наконец, дифференцирование этого уравнения 
по x приводит к так называемому логистическому 
уравнению или уравнению Ферхюльста (Verhulst),
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которое имеет аналитическое решение (см., на-
пример, [12]).

ПРИЛОЖЕНИЕ Б

Если в уравнении (10) выполнить дифференци-
рование по времени, то получим уравнение
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Из уравнений (4) можно получить следующее 
соотношение между производными по времени 
и по координате

∂
∂

= ∂
∂

+





M x t
t

C
A

I x t
x

BI x t
( , ) ( , )

( , ) .      (Б‑2)

Постановка этого соотношения под интеграл 
в уравнении (Б‑1) дает уравнение
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Первый интеграл легко берется по частям, в ре-
зультате чего уравнение значительно упрощается 
и сводится к одной из форм записи второго урав-
нения Дилла
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