— МОДЕЛИРОВАНИЕ =

УДК 621.382+620.18+544.18+544

МОДЕЛИРОВАНИЕ ЭЛЕКТРОННЫХ СВОЙСТВ М-ЛЕГИРОВАННЫХ СУПЕРЪЯЧЕЕК Li₄Ti₅O₁₂—М (M = Zr, Nb) С МОНОКЛИННОЙ СТРУКТУРОЙ ДЛЯ ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ

© 2024 г. М. М. Асадов^{*a*, *b*, *, С. О. Маммадова^{*c*, *d*}, С. Н. Мустафаева^{*c*}, С. С. С. Гусейнова^{*c*, *d*}, В. Ф. Лукичев^{*e*}, **}

^аИнститут катализа и неорганической химии им. М.Ф. Нагиева, Министерства науки и образования Азербайджана, Баку, Азербайджан

^bНаучно-исследовательский институт "Геотехнологические проблемы нефти, газа и химия", Баку, Азербайджан

^сИнститут физики, Министерства науки и образования Азербайджана, Баку, Азербайджан

^{*d*}Университет Хазар, Баку, Азербайджан

 e Физико-технологический институт им. К.А. Валиева Российской академии наук, Москва, Россия

*E-mail: mirasadov@gmail.com **E-mail: lukichev@ftian.ru Поступила в редакцию 23.10.2023 г. После доработки 10.11.2023 г. Принята к публикации 10.11.2023 г.

Уточнена фазовая диаграмма *T*-*x* квазибинарной системы Li₂O-TiO₂ и построено изотермическое сечение тройной системы Li-Ti-O при 298 К. Определены равновесные фазовые области Li-Ti-O в твердом состоянии с участием граничных бинарных оксидов и четырех промежуточных тройных соединений Li₄TiO₄, Li₂TiO₃, Li₄Ti₅O₁₂ и Li₂Ti₃O₇. Методом теории функционала плотности (DFT LSDA) рассчитаны энергии образования ($\Delta_f E$) указанных тройных соединений системы Li₂O-TiO₂ и построена зависимость $\Delta_f E$ от состава.

Проведено ab initio моделирование суперъячеек на основе М-легированного (M=Zr,Nb) анодного материала на основе соединения $Li_4Ti_5O_{12}$ (LTO) с моноклинной структурой (m). Показано, что частичное замещение катионов и кислорода в структуре m-LTO-M повышает эффективность литий-ионного аккумулятора (LIB) как за счет стабилизации структуры, так и за счет увеличения скорости диффузии Li^+ . За счет вклада d-орбиталей ($Zr^{4+}-4d$, $Nb^{3+}-4d$ орбитали) в обменную энергию происходит частичная поляризация электронных состояний и увеличивается электронная проводимость m-LTO-M. Образование кислородных вакансий в кристаллической решетке m-LTO-M, как и в бинарных оксидах, может создавать донорные уровни и улучшать транспорт Li^+ и электронов.

М-легирование структуры m-LTO путем замены катионов, в частности лития, на атомы Zr или Nb, заметно уменьшает ширину запрещенной зоны (E_g) суперячеек m-LTO-M. При этом в зонной структуре m-LTO-M уровень Ферми смещается в зону проводимости и запрещенная зона сужается. Уменьшение значения E_g увеличивает электронную и литий-ионную проводимость суперъячеек m-LTO-M.

Ключевые слова: DFT LSDA моделирование, суперъячейка, анодный материал, $Li_4Ti_5O_{12}$ (LTO), моноклинная структура, легирование, $Zr^{4+}-4d$, Nb³⁺-4d орбитали, зонная структура, электронные свойства

DOI: 10.31857/S0544126924010041

1. ВВЕДЕНИЕ

Известно, что литий-ионные аккумуляторы (LIB) являются важными системами хранения энергии. Они обеспечивают высокую плотность энергии и длительное время автономной работы LIB. Это приводит к широкому использованию LIB, например, в портативных электротехнических устройствах и электромобилях [1–6]. Мощность LIB зависит от нескольких факторов, в частности от материала электродов и скорости, с которой ионы лития и электроны передаются через электролит между двумя электродами в LIB. Наноструктурированные материалы могут улучшить электропроводность, позволяя сократить длину диффузии ионов лития в LIB.

Материалы на основе углерода часто используются в качестве анодных материалов в электрохимической ячейке. Например, графен может ускорить транспорт ионов лития в ячейке и обеспечить образование активных центров Li⁺ на поверхности графенового электрода. Это снижает потери энергии, вызванные поляризацией батареи, и увеличивает срок службы, например, по сравнению с графитовым анодом [7].

Титанат лития Li₄Ti₅O₁₂ (LTO) со структурой шпинели (пространственная группа (*пр. гр.*) *Fd*3*m*, № 227; *a* = 8.3558 Å) используется в качестве анодного материала с низким энергопотреблением (1.5 В) в LIB. В этой кубической структуре LTO атомы лития расположены как в октаэдрических, так и в тетраэдрических позициях [8]. Как ионная, так и электронная проводимость LTO мала ($\sigma_{dc} \approx 3 \times 10^{-10}$ Смсм⁻¹ при 300 К, $\sigma_{elec} \approx 1 \times 10^{-12} - 10^{-13}$ Смсм⁻¹ при 300 К. Поэтому зонная структура LTO модифицируется, например, за счет М-легирования [1]. Целью данной работы является ab initio моделирование влияния M = Zr или Nb-легирования на электронные свойства Li₄Ti₅O₁₂ с моноклинной структурой (m-LTO–M). Ниже мы рассмотрим свойства частичного замещения лития в модификации m-LTO атомами Zr → (Li) или Nb → (Li).

2. МОДЕЛЬ И МЕТОД РАСЧЕТА

Аb initio расчеты свойств суперъячеек на основе моноклинной модификации m-LTO-M (M = Zr, Nb) проводились на основе теории функционала плотности (DFT) [9–11]. Наличие М-легирующих компонентов в решетке m-LTO приводит к спин-орбитальной связи (SOC) в электронной структуре m-LTO-M.

Принято, что в приближении локальной плотности (LDA) функционал зависит только от плотности в координате, где он вычисляется:

$$E_{\rm XC}^{\rm LDA}(\rho) = \int E_{\rm XC}(\rho)\rho(\mathbf{r})d^3\mathbf{r}.$$
 (1)

Функционал LSDA является обобщением LDA, включая спин электрона $E_{\rm XC}^{\rm LSDA}(\rho_{\uparrow},\rho_{\downarrow})$:

$$E_{\rm XC}^{\rm LSDA}\left(\rho_{\uparrow},\rho_{\downarrow}\right) = \int E_{\rm XC}\left(\rho_{\uparrow},\rho_{\downarrow}\right)\rho(\mathbf{r})d^{3}\mathbf{r}.$$
 (2)

В расчетах к полной энергии LSDA добавляются различные члены для учета эффектов кулоновских корреляций. Например, учитываются вклады, подобные локальной силе отталкивания LSDA + U.

В расчетах DFT LSDA в качестве валентных состояний электронов использовались базовые конфигурации составляющих компонентов m-LTO M = Zr, Nb: Li $- 1s^22s^1$; O $- 1s^22s^22p^4$; Ti - [Ar] $3d^24s^2$; Zr $- [Kp] 4d^25s^2$; Nb $- [Kp] 4d^45s^1$.

Частичное замещение лития в кубической решетке $Li_4Ti_5O_{12}$ (рис. 1, *a*) легирующими атомами металла может привести к спин-орбитальному взаимодействию (SOC). Это явление имеет место

(a)c-LTO Li *(б)* O Ti m-LTO (R) t-LTO 0

Рис. 1. Кристаллическая структура $\text{Li}_4\text{Ti}_5\text{O}_{12}$ (LTO): *а* — кубическая модификация шпинели с-LTO; δ — моноклинная модификация m-LTO; *в* — триклинная модификация t-LTO.

в моноклинной m-LTO-M (рис. 1, δ) и триклинной t-LTO-M(рис. 1, θ) модификациях.

Расчеты DFT проводились на примитивных и конвекционных суперьячейках m-LTO-M с использованием псевдопотенциалов, включающих SOC. Для базиса плоских волн порог кинетической энергии составлял 150 Ry. Выборка k-точечной сетки Монкхорста—Пака была установлена на 2 × 2 × 2 точки для зоны Бриллюэна. Ширина запрещенной зоны (E_g) кристаллов на основе m-LTO рассчитана с учетом SOC. В расчетах порог

МИКРОЭЛЕКТРОНИКА том 53 № 1 2024

сходимости межатомных сил составил 10^{-4} эВ/Å. Параметры элементарной ячейки m-LTO—M и положения атомов в решетке были релаксированы и оптимизированы.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Система Li-Ti-O

Фазовая диаграмма системы Li_2O-TiO_2 ранее изучалась разными авторами. В ней образуются четыре тройных соединения Li_4TiO_4 , Li_2TiO_3 , $Li_4Ti_5O_{12}$ и $Li_2Ti_3O_7$ [12]. На рис. 2, а представлена уточненная нами фазовая диаграмма Li_2O-TiO_2 . На рис. 2, δ показано изотермическое сечение фазовой диаграммы системы Li-Ti-O при 298 K, построенной нами. Диаграммы T-x граничных систем Li-O [13], O-Ti [14], Li-Ti [15] были использованы в качестве исходных данных. Из этих тройных оксидов (A, B, C, D) в качестве анодного материала в настоящее время используется состав $Li_4Ti_5O_{12}$ (см. рис. 2, δ).

Методами термодинамики [16] и DFT исследованы энергетические характеристики промежуточных тройных фаз в системе Li-Ti-O. Определены коноды внутри концентрационного треугольника Li-Ti-O в твердом состоянии. Коноды системы Li-Ti-O определены с учетом энтальпии образования ($\Delta_f H_{298}$) бинарных и тройных оксидов. Значения $\Delta_f H_{298}$ тройных соединений рассчитаны методом DFT LDA с учетом эталонных значений $\Delta_f H_{298}$ бинарных оксидов. Для бинарных оксидов титана и лития, в частности, использовались стандартные значения $\Delta_f H_{298}$ (298) (кДж/моль): -1518 (Ti₂O₃), -943 (TiO₂), -68 (LiO), -598 (Li₂O). Рассчитанные энергии образования Li₄TiO₄, Li₂TiO₃, Li₄Ti₅O₁₂ и Li₂Ti₃O₇ отрицательны, т.е. эти соединения энергетически стабильны и могут быть синтезированы.

3.1.1. Учет спин-орбитального взаимодействия

Метод DFT учитывает обменно-корреляционные взаимодействия и рассчитывает свойства систем на основе их электронной плотности $\rho(\mathbf{r})$. Величина $\rho(\mathbf{r})$ в основном состоянии электронной системы определяет потенциал $V(\mathbf{r})$ внешнего поля. В DFT принято, что $\rho(\mathbf{r})$ определяет количество электронов, свойства и энергии основного и возбужденного состояний. Полная энергия системы имеет вид функционала плотности:

$$E[\rho(\mathbf{r})] = V(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} + T[\rho(\mathbf{r})] + V_{ee}[\rho(\mathbf{r})], \quad (3)$$

где $V(\mathbf{r})\rho(\mathbf{r})d\mathbf{r}$ — энергия взаимодействия с внешним полем; $T[\rho(\mathbf{r})]$ — функционал кинетической энергии; $V_{ee}[\rho(\mathbf{r})]$ — функционал энергии электрон-электронного взаимодействия.

МИКРОЭЛЕКТРОНИКА том 53 № 1 2024

Рис. 2. Уточненная нами фазовая диаграмма (*a*) системы Li₂O-TiO₂: $1 - Li_2O + Li_4TiO_4$; $2 - Li_2O + L$ (жидкость); $3 - L + Li_4TiO_4$; $4 - Li_4TiO_4 + \beta-Li_2TiO_3$ (ss), где ss – твердые растворы; $5 - Li_4TiO_4 + \gamma-Li_2TiO_3$ (ss); $6 - L + \gamma-Li_2TiO_3$ (ss); $7 - \gamma-Li_2TiO_3$ (ss); $8 - \gamma-Li_2TiO_3$ (ss) $+ \beta - Li_2TiO_3$; $9 - \beta-Li_2TiO_3$ (ss); $10 - \beta-Li_2TiO_3$ (ss) $+ Li_4Ti_5O_{12}$ (LTO); $11 - \gamma-Li_2TiO_3$ (ss) + (LTO); $12 - \gamma-Li_2TiO_3$ (ss) $+ Li_2Ti_3O_7$; $13 - Li_2Ti_3O_7$; $14 - \beta-Li_2Ti_3O_7$ (ss) + LiO; $15 - \beta-Li_2Ti_3O_7$ (ss) $+ TiO_2$; $16 - \gamma-Li_2Ti_3O_7$ (ss) $+ TiO_2$; $17 - L + TiO_2$; $18 - \gamma-Li_2Ti_3O_7$ (ss) + L; $19 - \gamma-Li_2TiO_3$ (ss) + L; предварительно построенное нами изотермическое сечение (δ) системы Li-Ti-O при 298 K; концентрационная зависимость энергии образования тройных соединений (e) в системе Li₂O-TiO₂. Рассчитанные значения $\Delta_f E$ для фаз Li₄TiO₄, Li₂TiO₃, Li₄Ti₅O₁₂ лежат на выпуклой оболочке и термодинамически устойчивы.

Плотность основного состояния $\rho_0(\mathbf{r})$ при заданной энергии $V(\mathbf{r})$ позволяет минимизировать функционал полной энергии $\left[\rho(\mathbf{r})\right]$. Для точных расчетов функционала $E\left[\rho(\mathbf{r})\right]$ необходимо также знать сумму $T\left[\rho(\mathbf{r})\right] + V_{ee}\left[\rho(\mathbf{r})\right]$. Таким образом, минимизация $E\left[\rho(\mathbf{r})\right]$ позволяет рассчитать энергию основного состояния системы и плотность взаимодействующих электронов.

Для учета гипотетической системы невзаимодействующих электронов с одинаковой плотностью $\rho(\mathbf{r})$ принята следующая замена:

$$T[\rho(\mathbf{r})] + V_{ee}[\rho(\mathbf{r})] \equiv T_s[\rho] + J[\rho] + E_{XC}[\rho]; \quad (4)$$

$$J[\rho] = \int \frac{\rho(\mathbf{r}_1)\rho(\mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d(\mathbf{r}_1) d(\mathbf{r}_2), \qquad (5)$$

где $E_{\text{XC}}[\rho] = T[\rho(\mathbf{r})] + V_{\text{ee}}[\rho(\mathbf{r})] - T_s[\rho]$ — обменно-корреляционный функционал.

С учетом сказанного выше функционал полной энергии определяется уравнением

$$E[\rho(\mathbf{r})] = \int V(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} + \int \frac{\rho(\mathbf{r}_{1})\rho(\mathbf{r}_{2})}{|\mathbf{r}_{1}-\mathbf{r}_{2}|}d(\mathbf{r}_{1})d(\mathbf{r}_{2}) + T_{s}[\rho(\mathbf{r})] + E_{\rm XC}[\rho(\mathbf{r})].$$
(6)

Условная минимизация функционала $E[\rho(\mathbf{r})]$ решается методом множителей Лагранжа при сохранении числа частиц в системе. Согласование взаимодействующих и невзаимодействующих электронов системы уравнением Эйлера приводит к уравнению определения потенциала $V_s(\mathbf{r})$:

$$V_{s}(\mathbf{r}) = V(\mathbf{r}) + \frac{\delta J[\rho]}{\delta \rho} + \frac{\delta E_{\rm XC}[\rho]}{\delta \rho}.$$
 (7)

Таким образом, энергия системы взаимодействующих электронов определяется уравнением

$$E\left[\rho(\mathbf{r})\right] = 2\sum_{i=1}^{N/2} \varepsilon_i - J\left[\rho(\mathbf{r})\right] - \int \frac{\delta E_{\rm XC}\left[\rho\right]}{\delta\rho} \rho(\mathbf{r}) d\mathbf{r} + E_{\rm XC}\left[\rho(\mathbf{r})\right], \tag{8}$$

где N — общее количество электронов. Вид функционала $E_{\rm XC}[\rho(\mathbf{r})]$ определяется различными приближенными выражениями. В случае медленно меняющейся электронной плотности часто используют приближение локальной плотности (LDA).

В DFT LSDA обменно-корреляционная энергия зависит от двух спиновых плотностей: $\varepsilon_{XC}(\rho_{\uparrow},\rho_{\downarrow})$. Поэтому обменно-корреляционный потенциал различен для электронов с проекциями спина вверх и вниз: $V_{\sigma}(\mathbf{r}) = \frac{d}{d\rho_{\sigma}} (\rho \varepsilon_{XC}(\rho_{\uparrow},\rho_{\downarrow}))$. Тогда потенциал спин-поляризации

$$V_{\uparrow} - V_{\downarrow} = \frac{\delta E^{\text{LSDA}}}{\delta \rho_{\uparrow}(\mathbf{r})} - \frac{\delta E^{\text{LSDA}}}{\delta \rho_{\downarrow}(\mathbf{r})}.$$
 (9)

Для учета эффектов спин-орбитального взаимодействия и их влияния на энергетическую структуру m-Li₄Ti₅O₁₂—M (M = Zr, Nb) был использован метод DFT LSDA. Эти легирующие *d*-элементы с наивысшей энергией в химических соединениях проявляют переменные степени окисления: Zr (2, 3, 4) и Nb (2, 3, 4, 5). Принято считать, что спин-орбитальное взаимодействие приводит к сдвигам атомных энергетических уровней электрона за счет электромагнитного взаимодействия между магнитным диполем электрона, его орбитальным движением и электростатическим полем положительно заряженного ядра.

3.1.2. DFT-расчет энергии образования

В общем случае энергия образования соединения определяется выражением

$$\Delta_f E \approx \Delta_f H = E_{\text{tot}} - \sum_i \mu_i x_i, \qquad (10)$$

где E_{tot} — полная энергия соединения по DFT; μ_i — химический потенциал элемента *i*; x_i — количество элемента *i* в соединении.

Принято, что при T = 0 К химический потенциал каждого типа элемента соответствует полной энергии DFT основного состояния этого элемента. Согласно вышеизложенному энергия образования тройных соединений, например, определялась как

$$\Delta_f E(\text{LTO}) = E(\text{LTO}) - \frac{1}{3}(\mu_{\text{L}} + \mu_{\text{T}} + \mu_{\text{O}}), \quad (11)$$

где E(LTO) — полная энергия, приходящаяся на атом соединения $\text{Li}_4\text{Ti}_5\text{O}_{12}$; μ_i — эталонный химический потенциал элемента *i*, выбранный в соответствии с OQMD (Open Quantum Materials Database).Рассчитанные энергии образования Li_4TiO_4 , Li_2TiO_3 , $\text{Li}_4\text{Ti}_5\text{O}_{12}$ отрицательны (рис. 2, *в*). Это показывает, что данные структуры энергетически стабильны и их легко получить экспериментально. DFT-рассчитанные значения $\Delta_f E$ бинарных и тройных соединений системы Li_2O -TiO₂ имеют следующие значения: Li_2O (-2.85 эB), TiO₂ (-3.52 эB), Li_4TiO_4 (-2.71 эB), Li_2TiO_3 (-2.98 эB), $\text{Li}_4\text{Ti}_5\text{O}_{12}$ (-3.21 эB).

Рассчитанное отрицательное значение $\Delta_f E$ тройных соединений системы Li₂O–TiO₂ свидетельствует о том, что при нулевой температуре тройные соединения более стабильны, чем входящие в их состав бинарные компоненты Li₂O и TiO₂.

Из изотермического разреза тройной системы Li–Ti–O видно, что в бинарной системе Ti–O между соединениями TiO₂ ($T_{\rm m} = 1869^{\circ}$ C) и Ti₄O₇ ($T_{\rm m} = 1667^{\circ}$ C) в интервале концентраций а—b образуются семь бинарных фаз: Ti₂₀O₃₉ ($T_{\rm m} = 1757^{\circ}$ C), Ti₁₀O₁₉ ($T_{\rm m} = 1698^{\circ}$ C), Ti₉O₁₇, Ti₈O₁₅, Ti₇O₁₃, Ti₆O₁₁, Ti₅O₉ ($T_{\rm m} = 1675^{\circ}$ C). Из тройных оксидов системы Li–Ti–O (см. рис. 2, δ) в качестве анодного материала используется состав *c*-Li₄Ti₅O₁₂.

МИКРОЭЛЕКТРОНИКА том 53 № 1 2024

+

Рис. 3. Атомная структура с моноклинной структурой m-LTO–M: a — суперъячейка m-LTO; δ — суперъячейка m-LTO–Nb; e — конвекционная суперъячейка m-LT–Nb.

Соединение $\text{Li}_4\text{Ti}_5\text{O}_{12}$ — моноклинная модификация, которую мы рассмотрим ниже, плавится инкогруэнтно при $T_{\rm m} = 1015^{\circ}\text{C}$. Фаза $\text{Li}_4\text{Ti}_5\text{O}_{12}$ имеет несколько модификаций, в частности кубическую (a = 8.35-5.41 Å) [1–6] и моноклинн ую структуры [17]. Температура фазового перехода от кубической структуры к моноклинной на T-x диаграмме Li_2O –TiO₂ не обнаружена.

Электронные свойства материалов на основе $\text{Li}_4\text{Ti}_5\text{O}_{12}$ с моноклинной структурой m-LTO (пр. гр. C2/c, \mathbb{N} 15; a = 8.35 Å, b = 8.32 Å,

МИКРОЭЛЕКТРОНИКА том 53 № 1 2024

c = 13.17 Å, $\alpha = 90.00^{\circ}$, $\beta = 107.94^{\circ}$, $\gamma = 90.00^{\circ}$, V = 871.06 Å) изучены слабо.

Легирование Zr соединения LTO с кубической структурой в позиции Ti показывает, что электрохимические характеристики Li₄Ti_{5-x}Zr_xO₁₂ улучшаются [18]. Восстановление соединения LTO (Ti⁴⁺ \rightarrow Ti³⁺) также осуществлялось легированием Nb. Это увеличивает перенос заряда в Li₄Ti_{5-x}Nb_xO₁₂, что, в свою очередь, улучшает производительность LIB.

Для соединения LTO с моноклинной структурой (m-LTO) такие данные отсутствуют. Геометрическая оптимизация структуры соединения LTO показывает, что m-LTO имеет моноклинную структуру и пространственную группу C2/c с параметрами решетки a = 8.35 Å, b = 8.32 Å, c = 13.17 Å.

Рис. 4. Зонная структура суперъячейки m-LTO (*a*); DOS суперъячейки m-LTO (*б*). Энергия Ферми установлена равной 0 эВ.

3.2. Атомная структура т-LTO-М

Влияние легирования Zr или Nb на структуру суперъячейки m-LTO исследовано методом DFT LSDA. В качестве примера ниже рассмотрим атомную структуру m-LTO–M, где M = Zr или Nb частично замещает литий. На рис. 3 показаны релаксированные атомные структуры m-LTO, легированные Zr или Nb.

3.3. Электронная структура т-LTO

Недостатком LTO как материала анода в LIB является его высокое сопротивление (10⁻¹³ См/см). Это приводит к низкой скорости переноса частиц в LIB. Имея это в виду, рассмотрим электронные свойства m-LTO. Электронная структура материала связана с его электрическими свойствами. Запрещенная зона — это характеристика материала и мера электропроводности. Зонная структура чистой суперъячейки LTO нами рассчитана с использованием функционала LSDA.

На рис. 4, *a*, *б* представлены зонная структура и плотность состояний (DOS) оптимизированных структур m-LTO.

С помощью метода DFT LSDA рассчитанная нами зонная структура m-LTO показывает ширину запрещенной зоны 2.59 эВ. В зонной структуре суперъячейки m-LTO валентная зона состоит в основном из 2p-состояний кислорода. А в зоне проводимости преобладают 3d-состояния титана. DOS указывает на сильное взаимодействие между атомами (или ионами) октаэдров Ti–O₆ структуры LTO [19, 20]. Из PDOS компонентов m-LTO следует, что электронные состояния Ti-3d и O-2pперекрываются.

Таким образом, установлено следующее. Рассчитанная нами ширина запрещенной зоны (E_g , эВ) m-LTO (моноклинная модификация; C2/c, № 15) составляет 2.59 эВ в симметричной точке G. Это значение ближе к расчетному значению 2.66 эВ [17], чем к результатам кубических образцов соединения LTO [21–23] (рис. 5, *a*, *б*) и триклинной модификации [24, 25] (табл. 1).

Кристалл Li₄Ti₅O₁₂ с кубической структурой является аналогом минерала шпинели MgAl₂O₄ (пр. гр. $Fd\overline{3}m$, a = 8.0898 Å). В структуре шпинели

Таблица 1. Ширина запрещенной зоны (E_g , эВ) и длина связи (Å) атом-атом разных модификаций LTO

Структура LTO	$E_{\rm g}, { m 3B}$	Длина связи (Å)
c-LTO	1.7-2.3 [21-23]	1.988-2.479 (Li-O)
t-LTO	2.98-3.02 [24,25]	1.757–2.210 (Ti–O) [24]
m-LTO	2.66 эВ [17]	1.99-2.16 (Li-O)
m-LTO	2.59 эВ	1.85-2.18 (Ti-O)

ионы кислорода (32е) образуют кубический плотноупакованный (сср) массив, а междоузлия частично заняты катионами А и В с тетраэдрической (8а, 8b, 48c) и октаэдрической (16c, 16d) координацией соответственно [21].

Атомная проекция DOS двух *d*-состояний Ti в кубической структуре с—LTO по энергии E(k)*d*-орбиталей суперъячейки 1 × 1 × 3 (рис. 5, δ) соответствует *d*-состояниям Ti в модификации m-LTO.

Из рис. 5, б видно, что *d*-состояния Ti разделены на две молекулярные орбитали: t_{2g} и e_g . Это можно связать с влиянием октаэдрического кристаллического поля в кристалле LTO на *d*-состояния. В LTO энергия *d*-орбиталей с низкой энергией соответствует $t_{2g} \sim 2$ эВ, а энергия *d*-орбиталей с относительно высокой энергией $e_g \sim 4.5$ эВ. Молекулярные орбитали t_{2g} и e_g пусты.

Согласно квантовой химии при l = 2 (орбитальное квантовое число) значения m_l (магнитное квантовое число) могут быть -2, -1, 0, +1, +2 для пяти d-орбиталей атома (рис. 5, e).

На рис. 5, e приведена схема Ti-3 $d(t_{2g})$ орбиталей атома титана в LTO.

3.4. Электронная структура т-LTO-М

Легирование металлами часто увеличивает электронную проводимость LTO. Результаты DFT LSDA расчетов показывают, что зона проводимости m-LTO (зона Ti-3d) отделена на 2.3 эВ от заполненной зоны O-2p. Это указывает на то, что нелегированный m-LTO имеет E_g , близкую к изоляторам. В m-LTO, легированном M (M = Zr, Nb), энергетические зоны орбиталей Ti-3d близки к таковым у Zr-4d и Nb-4d. Поэтому электроны Zr или Nb в анодных материалах LTO при возбуждении, как и полосы Ti-3d, могут повысить электронную проводимость.

Валентные электроны легирующих металлов (менее 2 ат. %) в m-LTO могут увеличивать проводимость анода. При этом увеличится и концентрация носителей заряда, что улучшит электронную проводимость m-LTO-M. Поскольку уровень Ферми в легированном m-LTO-M смещается вверх поперек зоны проводимости, материал m-LTO-M демонстрирует полуметаллический характер. Легирование m-LTO также может увеличить емкость (>200 мА ч/г) анода.

Допинг улучшает стабильность кристаллической структуры и электрохимические характеристики анода m-LTO-M. Это связано с меньшим ионным радиусом Zr⁴⁺ или Nb³⁺ (Zr⁴⁺, r = 0.72Å; Nb³⁺, r = 0.72Å) по сравнению с ионом Li⁺ (0.76 Å). Кроме того, легирование Zr⁴⁺ или Nb³⁺ может генерировать кислородные вакансии для поддержания электронного нейтралитета в структуре. В этом случае стабильность LIB во время цикла зарядки/ разрядки обычно увеличивается. Электронный

Рис. 5. Элементарная ячейка $Li_4Ti_5O_{12}$ с кубической структурой (*a*), где зеленые тетраэдры и зеленые октаэдры — ионы Li в позиции 8a, синие октаэдры — ионы Li и Ti в позиции 16d, красные сферы — ионы кислорода в позиции 32e [21]; атомная проекция плотности состояний атома Ti в с-LTO (δ), рассчитанная с помощью DFT GGA суперячейки 1 × 1 × 3 [22]; пять *d*-орбиталей атома (*a*), имеющих разную трехмерную ориентацию. Орбитали расположены на схеме по мере возрастания их энергии; схема Ti-3*d*(t_{2g}) орбиталей атома титана в LTO (*c*). Орбитали расположены на диаграмме по мере увеличения их энергии.

перенос m-LTO-M также зависит от свойств ионных центров Ti³⁺—Ti⁴⁺. Следовательно, донорные примеси электронов могут улучшить проводимость. Такое легирование может обеспечить ионы Ti⁴⁺ с дополнительными электронами. В спектре DOS меняется положение уровня Ферми и новые состояния в запрещенной зоне не образуются.

Электрон-электронное взаимодействие приводит к сужению запрещенной зоны m-LTO-M. Вклад в обменную энергию также может вносить поляризация 4*d*-орбиталей M = Zr, Nb в соединении m-LTO-M. Расчеты DFT LSDA показывают, что после частичного (менее 2 ат. %) М-легирования уровень Ферми суперъячейки $2 \times 2 \times 2$ и обычной суперъячейки m-LTO-M смещается в зону проводимости. В обеих структурах m-LTO-Zr (Nb) "хвост" зоны проводимости перемещается ниже уровня Ферми и частично заполняется электронами (рис. 6).

М-легирование LTO может привести к появлению упорядочения в материалах m-LTO–Zr (Nb), которое проявляется в изменении свойств. Уровень Ферми в зонной структуре смещается вверх в зону проводимости. Следовательно, m-LTO–Zr

МИКРОЭЛЕКТРОНИКА том 53 № 1 2024

(Nb) проявляет полуметаллические свойства. По сравнению с чистым m-LTO зонные структуры m-LTO-Zr (Nb) становятся более компактными. Кратчайшее расстояние между частицами в Ті-О₆ несколько уменьшается. При этом орбитали Ti-3d и M-4d могут быть заполнены и поляризованы sи р-орбиталями с неспаренным электроном. В результате орбитальной поляризации может возникнуть дисбаланс спиновой плотности на ядре, что приводит к изотропному расшеплению. Это показывает, что М-легирование изменяет взаимодействие между атомами в системе m-LTO-Zr (Nb). Влияние легирования Zr или Nb на зонную проводимость m-LTO-Zr (Nb) подтверждается также спектрами DOS и PDOS компонентов суперъячеек (рис. 7). В частности, это наблюдается при частичном замещении лития ($Li^+, r = 0.76$ Å) в m-LTO легирующими атомами Zr или Nb $(Zr^{4+}, r = 0.72 \text{ Å}; Nb^{3+}, r = 0.72 \text{ Å})$. Легирование m-LTO приводит к сужению запрещенной зоны между валентной зоной и зоной проводимости (табл. 2), что важно для улучшения электрических характеристик материалов.

АСАДОВ и др.

Рис. 6. Зонные структуры $2 \times 2 \times 2$ легированных суперъячеек m-LTO— Zr (Nb) с моноклинной структурой, рассчитанные методом DFT LSDA: a — суперъячейка m-LTO—Zr; δ — суперъячейка m-LTO—Nb. Энергия Ферми установлена равной 0 эВ по шкале энергий.

Рис. 7. Полная и парциальная плотности электронных состояний (DOS и PDOS) суперъячеек $2 \times 2 \times 2$ на основе m-LTO с моноклинной структурой, легированных Zr (или Nb): *a* – DOS суперъячейки m-LTO, легированной Zr; *б* – PDOS суперъячейки m-LTO, легированной Zr (Zr – PDOS); *в* – DOS суперъячейки m-LTO, легированной Nb; *г* – PDOS суперъячейки m-LTO, легированной Nb (Nb – PDOS). Энергия Ферми равна 0 эВ по шкале энергий.

Из характеристик орбиталей известно, что наибольшее число электронов на *d*-орбиталях может составлять 10. Следовательно, М-легирование может изменить концентрацию электронов между разнородными атомами Ti — [Ar] $3d^24s^2$, Zr — [Kp] $4d^25s^2$, Nb — [Kp] $4d^45s^1$, в частности за счет поляризации связей в соединении m-LTO. При этом изменяются плотность электронных состояний и концентрация носителей заряда в структуре. Энергия ионизации атомов, как известно, возрастает с увеличением заряда ядра и уменьшением атомного радиуса. Начальные потенциалы ионизации компонентов соединения m-Li₄Ti₅O₁₂ составляют: Li — 2*s*-состояние (5.5 эВ); О — 2*s*-состояние (29.2 эВ), 2*p*-состояние (14.2 эВ); Ti — 3*d*-состояние (8.6 эВ), 4*s*-состояние (0.2 эВ); Zr — 4*d*-состояние (7.5 эВ), 5*s*-состояние (5.9 эВ); Nb — 4*d*-состояние (6.1 эВ), 5*s*-состояние (5.5 эВ) [26, 27]. При легировании кристалла m-LTO-M (M = Zr, Nb) поляризуемость и прочность химических связей

изменяются в зависимости от энергии ионизации атомов легирующей примеси.

Таким образом, в присутствии легирующих атомов (при возбуждении атомов) в ходе их сближения с атомами других компонентов m-LTO-M изменяются волновые функции всех валентных электронов. Возникают новые волновые функции (или гибридизация атомных орбит). Благодаря этому электроны молекулы m-LTO-M распределятся по новым молекулярным орбиталям (MO). В этом случае каждая MO будет характеризоваться соответствующим набором квантовых чисел, отличающихся от MO нелегированной молекулы m-LTO. Атомы могут соединяться путем перекрытия орбиталей разных типов, которые по-разному ориентированы друг относительно друга.

При М-легировании может измениться степень окисления атомов молекулы m-LTO-M. Например, легирующие металлы Zr и Nb могут иметь несколько степеней окисления: Zr — +1, +2, +3, +4, -1; Nb - +2, +3, +4, +5, -2, -1. При этом изменяется степень переноса электронов и условных атомных зарядов в молекуле m-LTO-M. В молекуле m-LTO-М легирующие атомы М могут присоединять электроны и восстанавливаться до нейтрального атома. Кроме того, атомы примеси могут отдавать электроны отрицательному иону кислорода в октаэдре Ti-O₆, чтобы окислить ионы кислорода до нейтрального атома. Кислородные вакансии, образовавшиеся в разных кристаллических молификациях одного и того же соединения, имеют одинаковые особенности электронного строения. Поэтому изменение энергии образования химических связей в октаэдре Ті-О₆ может привести к ограниченным смещениям связанных зарядов. Происходит поляризация связи, что снижает Е_а в зонной структуре m-LTO-M. Уменьшение значения *E*_o m-LTO–M по сравнению с m-LTO косвенно указывает на изменение концентрации свободных носителей тока в m-LTO-M.

выводы

С учетом экспериментальных данных мы уточнили фазовую диаграмму T-x системы Li_2O-TiO_2 и построили изотермическое сечение системы Li–Ti–O при 298 К. На основании эталонных химических потенциалов элементов системы Li_2O-TiO_2 DFT LSDA рассчитаны энергии образования ($\Delta_f E$) стабильных бинарных и тройных соединений: Li_2O (-2.85 эВ), TiO_2 (-3.52 эВ), Li_4TiO_4 (-2.71 эВ) Li_2TiO_3 (-2.98 эВ), $Li_4Ti_5O_{12}$ (-3.21 эВ). На графике $\Delta_f E-x$ в системе Li_2O-TiO_2 соединение $Li_4Ti_5O_{12}$ (LTO) термодинамически более стабильно. Значения $\Delta_f E$ соединений системы Li_2O-TiO_2 лежат на зависимости $\Delta_f E-x$ в виде выпуклой оболочки.

МИКРОЭЛЕКТРОНИКА том 53 № 1 2024

Сравнение полных (DOS) и частичных спектров электронных состояний (PDOS) m-LTO–Zr и m-LTO–Nb, полученных при моделировании суперъячеек $2 \times 2 \times 2$, показывает, что в обоих соединениях с моноклинной структурой, содержащих от 1 до 2 ат.% M (Zr, Nb), электронные спектры атомов характеризуются сужением запрещенной зоны.

При частичном М-легировании электронная структура соединений m-LTO-M (M = Zr или Nb) остается стабильной, "хвост" зоны проводимости перемещается ниже уровня Ферми и частично заполняется. В модифицированной зонной структуре соединений m-LTO-M уровни Ферми смещаются вверх в зону проводимости, что указывает на проводимость *n*-типа.

Вклад орбиталей M = Zr-4*d* и Nb-4*d* в обменную энергию соединений m-LTO-M подтверждается изменением PDOS и DOS системы. Таким образом, M-легирование заметно сужает запрещенную зону m-LTO-M: E_g уменьшается от 2.59 (чистый m-LTO) до 0.11 эВ (для m-LTO-Zr), 0.15 (для m-LTO-Nb; спин вниз) и 0.22 эВ (для m-LTO-Nb; спин вверх) соответственно.

Такая же картина уменьшения $E_{\rm g}$ наблюдается в наших расчетах DFT LSDA для традиционных структур. По сравнению с чистым m-LTO М-легированные соединения имеют следующие значения: 0.19 эВ (m-LTO–Zr) и 0.21 эВ (m-LTO–Nb) соответственно. Таким образом, легирование моноклинной структуры суперъячеек m-LTO–M может повысить электронную и литий-ионную проводимость, что важно для анодных материалов.

БЛАГОДАРНОСТИ

Авторы признательны Р.Ю. Алиярову за полезные обсуждения.

ФИНАНСИРОВАНИЕ

Настоящая работа выполнена при частичной поддержке Фонда развития науки при Президенте Азербайджанской Республики (проект EİF-BGM-4-RFTFl/2017-21/05/1-М-07) и Российского фонда фундаментальных исследований (проект 18-57-06001 № Аz а 2018).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. *Reddy M.V., Subba Rao G.V., Chowdari B.V.R.* Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries // Chemical Reviews. 2013. V. 113. No. 7. P. 5364–5457. https://doi.org/10.1021/cr3001884

47

- Tanaka S., Kitta M., Tamura T., Maeda Y., Akita T., Kohyama M. Atomic and electronic structures of Li₄Ti₅O₁₂/Li₇Ti₅O₁₂ (001) interfaces by first-principles calculations // J Mater Sci. 2014. https://doi.org/10.1007/s10853-014-8102-x
- Ikezawa A., Fukunishi G., Okajima T., Kitamura F., Suzuki K., Hirayama M., Kanno R., Arai H. Performance of Li₄Ti₅O₁₂based Reference Electrode for the Electrochemical Analysis of Allsolid-state Lithium-ion Batteries // Electrochemistry Communications. 2020. V. 116. P. 106743. https://doi.org/10.1016/j.elecom.2020.106743
- 4. Ziebarth B., Klinsmann M., Eckl T., Elsässer C. Lithium diffusion in the spinel phase Li₄Ti₅O₁₂ and in the rocksalt phase Li₇Ti₅O₁₂ of lithium titanate from first principles // Physical Review B. 2014. V. 89. No. 17. P. 174301–7. https://doi.org/10.1103/physrevb.89.174301
- Xu G., Han P., Dong S., Liu H., Cui G., Chen L. Li₄Ti₅O₁₂based energy conversion and storage systems: status and prospects // Coordination Chemistry Reviews. 2017. S0010854517301121. P. 1–158. https://doi.org/10.1016/j.ccr.2017.05.006
- Zhang H., Yang Y., Xu H., Wang L., LX., He X. L_{i4}Ti₅O₁₂ spinel anode: Fundamentals and advances in rechargeable batteries // InfoMat. 2022. 4: e12228. P. 1–29. https://doi.org/10.1002/inf2.12228
- 7. Asadov M.M., Mammadova S.O., Huseynova S.S., Mustafaeva S.N., Lukichev V.F. Simulation of the Adsorption and Diffusion of Lithium Atoms on Defective Graphene for a Li-Ion Battery // Russian Microelectronics. 2023. V. 52. No. 3. P. 167–185. https://doi.org/10.1134/S1063739723700336
- Zhao B., Ran R., Liu M., Shao Z. A comprehensive review of Li₄Ti₅O₁₂ based electrodes for lithium-ion batteries: The latest advancements and future perspectives // Materials Science and Engineering R. 2015. V. 98. P. 1–71. https://doi.org/10.1016/j.mser.2015.10.001
- 9. Asadov M.M., Mammadova S.O., Guseinova S.S., Mustafaeva S.N., Lukichev V.F. Ab initio calculation of the band structure and properties of modifications of the Ti₃Sb compound doped with lithium // Physics of the Solid State. 2022. V. 64. No. 11. P. 1594–1609. https://doi.org/10.21883/PSS.2022.11.54179.395
- Asadov M.M., Mammadova S.O., Guseinova S.S., Mustafaeva S.N., Lukichev V.F. Modeling of Gold Adsorption by the Surface of Defect Graphene // Russian Microelectronics. 2022. V. 51. No. 6. P. 413–425. https://doi.org/10.1134/S1063739722700159
- Asadov M.M., Mammadova S.O., Guseinova S.S., Mustafaeva S.N., Lukichev V.F. Modeling structural and energy characteristics of atoms in a GaS2D-crystal with point defects // Physics of the Solid State. 2022. V. 64. No. 1. P. 44–57. https://doi.org/10.21883/PSS.2022.01.52487.182
- Kleykamp H. Phase equilibria in the Li—Ti—O system and physical properties of Li₂TiO₃ // Fusion Engineering and Design. 2002. V. 61–62. P. 361–366. https://doi.org/10.1016/s0920-3796(02)00120-5
- Okamoto H. Li-O (Lithium-Oxygen) // Journal of Phase Equilibria and Diffusion. 2013. V. 34. No. 2. P. 169. https://doi.org/ 10.1007/s11669-012-0182-1
- Okamoto H. O-Ti (Oxygen-Titanium) // Journal of Phase Equilibria and Diffusion. 2011. V. 32. No. 5. P. 473–474. https://doi.org/10.1007/s11669-011-9935-5

- Bale C.W. The Li-Ti (Lithium-Titanium system). Bulletin of Alloy Phase Diagrams. 1989. V. 10. No. 2. P. 135–138. https://doi.org/10.1007/bf02881424
- 16. Asadov M.M., Kuli-zade E.S. Phase equilibria, thermodynamic analysis and electrical properties of the Li₂O-Y₂O₃-B₂O₃ system // Journal of Alloys and Compounds. JALCOM (IF 4.650) Pub Date: 2020-05-23. https://doi.org/10.1016/j.jallcom.2020.155632
- https://next-gen.materialsproject.org/materials/mp-685194. mp-685194: Li₄Ti₅O₁₂ (Monoclinic, C2/c, 15).
- Li X., Qu M., Yu Z. Structural and electrochemical performances of Li₄Ti_{5-x}Zr_xO₁₂ as anode material for lithium-ion batteries // Journal of Alloys and Compounds. 2009. V. 487. No. 1–2. P. L12–L17. https://doi.org/110.1016/j.jallcom.2009.07.176
- 19. Kim S.-K., Kwon E.-S., Kim T.-H., Moon J., Kim J. Effects of atmospheric Ti (III) reduction on Nb_2O_5 -doped $Li_4Ti_5O_{12}$ anode materials for lithium ion batteries. Ceramics International. 2014. V. 40. No. 6. P. 8869–8874. https://doi.org/10.1016/j.ceramint.2013.12.132
- Wang L., Zhang Y.M., Guo H.Y., Li J., Stach E.A., Tong X., Takeuchi E.S., Takeuchi K.J., Liu P., Marschilok A.C., Wong S.S. Structural and Electrochemical Characteristics of Ca-Doped "Flowerlike" Li₄Ti₅O₁₂ Motifs as High-Rate Anode Materials for Lithium-Ion Batteries // Chem Mater. 2018. V. 30. No. 3. P. 671–684.
- Tsai P., Hsu W-D., Lin S. Atomistic Structure and Ab Initio Electrochemical Properties of Defect Spinel for Li Ion Batteries // Journal of the Electrochemical Society. 2014. V. 161. No. 3. A439—A444. https://doi.org/10.1149/2.095403jes
- 22. Ouyang C.Y., Zhong Z.Y., Lei M.S. Ab initio studies of structural and electronic properties of spinel // Electrochemistry Communication. 2007. V. 9. No. 5. P. 1107–1112.

https://doi.org/10.1016/j.elecom.2007.01.013

 Ding Z., Zhao L., Suo L., Jiao Y., Meng S., Hu Y-S., Wang Z., Chen L. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of in lithium ion batteries: a combined experimental and theoretical study // Physical Chemistry Chemical Physics. 2011. V. 13. No. 33. P. 15127–15133.

https://doi.org/10.1039/C1CP21513B

- 24. Nguyen T.D.H., Pham H.D., Lin S.-Y., Lin M.-F. Featured properties of Li⁺-based battery anode: // RSC Advances. 2020. V. 10. No. 24. P. 14071–14079. https://doi.org/10.1039/D0RA00818D
- 25. https://next-gen.materialsproject.org/materials/ mp-772925: (Triclinic, P-1, 2) (materialsproject.org).
- 26. *Yeh J.-J., Lindau I.* Atomic subshell photoionization cross sections and asymmetry parameters: 1≤Z≤103. 1985. V. 32. No. 1. P. 1–155. https://doi.org/10.1016/0092-640x(85)90016-6
- 27. *Yeh J.-J.* Atomic Calculation of Photoionization Crosssection and Asymmetry Parameters. Gordon and Breach. New Jersey, 1993.

МИКРОЭЛЕКТРОНИКА том 53 № 1 2024

MODELING OF THE ELECTRONIC PROPERTIES OF M-DOPED SUPERCELLS (M = Zr, Nb) WITH A MONOCLINIC STRUCTURE FOR LITHIUM-ION BATTERIES

© 2024 M. M. Asadov^{a, b, *}, S. O. Mammadova^{c, d}, S. N. Mustafaeva^c, S. S. Huseynova^{c, d}, V. F. Lukichev^{e, **}

^aNagiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of Azerbaijan, Baku, Azerbaijan

^bScientific Research Institute of Geotechnological Problems of Oil, Gas and Chemistry, Baku, Azerbaijan ^cInstitute of Physics, Ministry of Science and Education of Azerbaijan, Baku, Azerbaijan

^dKhazar University, Baku, Azerbaijan

eValiev Physics and Technology Institute, Russian Academy of Sciences, Moscow, Russia

*e-mail: mirasadov@gmail.com

*e-mail: lukichev@ftian.ru

Th *T*-*x* phase diagram of the quasi-binary system $\text{Li}_2\text{O}-\text{TiO}_2$ was refined and the isothermal cross section of the ternary Li-Ti-O system at 298 K was constructed. The equilibrium phase regions of Li-Ti-O in the solid state are determined with the participation of boundary binary oxides and four intermediate ternary compounds Li_4TiO_4 , Li_2TiO_3 , $\text{Li}_4\text{Ti}_5\text{O}_{12}$ and $\text{Li}_2\text{Ti}_3\text{O}_7$. Using the density functional theory (DFT LSDA) method, the formation energies ($\Delta_f E$) of the indicated ternary compounds of the Li_2O -TiO₂ system were calculated and the dependence of $\Delta_f E$ on the composition was plotted.

Ab initio modeling of supercells based on M-doped (M=Zr,Nb) anode material based on the $Li_4Ti_5O_{12}$ (LTO) compound with a monoclinic structure (m) was carried out. It has been shown that partial substitution of cations and oxygen in the m-LTO-M structure increases the efficiency of a lithium-ion battery (LIB) both by stabilizing the structure and by increasing the diffusion rate of Li^+ . Due to the contribution of d-orbitals ($Zr^{4+}-4d$, $Nb^{3+}-4d$ orbitals) to the exchange energy, partial polarization of electronic states occurs and the electronic conductivity of m-LTO-M increases. The formation of oxygen vacancies in the m-LTO-M crystal lattice, as in binary oxides, can create donor levels and improve the transport of Li^+ and electrons.

M-doping of the m-LTO structure by replacing cations, in particular lithium, with Zr or Nb atoms noticeably reduces the band gap (E_g) of m-LTO-M supercells. In this case, in the m-LTO-M band structure, the Fermi level shifts to the conduction band and the band gap narrows. Decreasing the E_g value increases the electronic and lithium-ion conductivity of m-LTO-M supercells.

Keywords: DFT LSDA modeling, supercell, anode material, $Li_4Ti_5O_{12}$ (LTO), monoclinic structure, doping, $Zr^{4+}-4d$, Nb³⁺-4d orbitals, band structure, electronic properties

REFERENCES

- Reddy M.V., Subba Rao G.V., Chowdari B.V.R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries // Chemical Reviews 2013. V. 113. No. 7. P. 5364 –5457. https://doi.org/10.1021/cr3001884
- Tanaka S., Kitta M., Tamura T., Maeda Y., Akita T., Kohyama M. Atomic and electronic structures of Li₄Ti₅O₁₂/ Li₇Ti₅O₁₂ (001) interfaces by first-principles calculations // J Mater Sci. 2014. https://doi.org/10.1007/s10853-014-8102-x
- Ikezawa A., Fukunishi. G, Okajima T., Kitamura F., Suzuki K., Hirayama M., Kanno R., Arai H. Performance of Li₄Ti₅O₁₂-based Reference Electrode for the Electrochemical Analysis of Allsolid-state Lithium-ion Batteries // Electrochemistry Communications. 2020. V. 116. P. 106743.

https://doi.org/10.1016/j.elecom.2020.106743

4. Ziebarth B., Klinsmann M., Eckl T., Elsässer C. Lithium diffusion in the spinel phase Li₄Ti₅O₁₂ and in the rocksalt

phase Li₇Ti₅O₁₂ of lithium titanate from first principles // Physical Review B. 2014. V. 89. No. 17. P. 174301–7. https://doi.org/10.1103/physrevb.89.174301

- Xu G., Han P., Dong S., Liu H., Cui G., Chen L. Li₄Ti₅O₁₂-based energy conversion and storage systems: status and prospects // Coordination Chemistry Reviews. 2017. S0010854517301121. P. 1–158. https://doi.org/10.1016/j.ccr.2017.05.0066.
- Zhang H., Yang Y., Xu H., Wang L., LX., He X. Li₄Ti₅O₁₂ spinel anode: Fundamentals and advances in rechargeable batteries // InfoMat. 2022. 4: e12228. P. 1–29. https://doi.org/10.1002/inf2.12228
- Asadov M.M., Mammadova S.O., Huseynova S.S., Mustafaeva S.N., Lukichev V.F. Simulation of the Adsorption and Diffusion of Lithium Atoms on Defective Graphene for a Li-Ion Battery // Russian Microelectronics. 2023. V. 52. No. 3. P. 167–185. https://doi.org/10.1134/S1063739723700336

- Zhao B., Ran R., Liu M., Shao Z. A comprehensive review of Li₄Ti₅O₁₂ based electrodes for lithium-ion batteries: The latest advancements and future perspectives // Materials Science and Engineering R. 2015. V. 98. P. 1–71. https://doi.org/10.1016/j.mser.2015.10.001
- Asadov M.M., Mammadova S.O., Guseinova S.S., Mustafaeva S.N., Lukichev V.F. Ab initio calculation of the band structure and properties of modifications of the Ti₃Sb compound doped with lithium // Physics of the Solid State. 2022. V. 64. No. 11. P. 1594–1609. https://doi.org/10.21883/PSS.2022.11.54179.395
- Asadov M.M., Mammadova S.O., Guseinova S.S., Mustafaeva S.N., Lukichev V.F. Modeling of Gold Adsorption by the Surface of Defect Graphene // Russian Microelectronics. 2022. V. 51. No. 6. P. 413–425. https://doi.org/10.1134/S1063739722700159
- Asadov M.M., Mammadova S.O., Guseinova S.S., Mustafaeva S.N., Lukichev V.F. Modeling structural and energy characteristics of atoms in a GaS2D-crystal with point defects // Physics of the Solid State. 2022. V. 64. No. 1. P. 44–57.

https://doi.org/10.21883/PSS.2022.01.52487.182

- Kleykamp H. Phase equilibria in the Li—Ti—O system and physical properties of Li₂TiO₃ // Fusion Engineering and Design. 2002. V. 61–62. P. 361–366. https://doi.org/10.1016/s0920-3796(02)00120-5
- Okamoto H. Li-O (Lithium-Oxygen) // Journal of Phase Equilibria and Diffusion. 2013. V. 34. No. 2. P. 169. https://doi.org/ 10.1007/s11669-012-0182-1
- Okamoto H. O-Ti (Oxygen-Titanium) // Journal of Phase Equilibria and Diffusion. 2011. V. 32. No. 5. P. 473–474. https://doi.org/10.1007/s11669-011-9935-5
- Bale C.W. The Li-Ti (Lithium-Titanium system). Bulletin of Alloy Phase Diagrams. 1989. V. 10. No. 2. P. 135–138. https://doi.org/10.1007/bf02881424
- 16. Asadov M.M., Kuli-zade E.S. Phase equilibria, thermodynamic analysis and electrical properties of the Li₂O– Y₂O₃-B₂O₃ system // Journal of Alloys and Compounds. JALCOM (IF 4.650) Pub Date: 2020–05–23. https://doi.org/10.1016/j.jallcom.2020.155632
- https://next-gen.materialsproject.org/materials/ mp-685194. mp-685194: Li₄Ti₅O₁₂ (Monoclinic, C2/c, 15).
- 18. Li X., Qu M., Yu Z. Structural and electrochemical performances of Li₄Ti_{5-x}Zr_xO₁₂ as anode material for

lithium-ion batteries // Journal of Alloys and Compounds. 2009. V. 487. No. 1–2. P. L12–L17. https://doi.org/110.1016/j.jallcom.2009.07.176

- 19. *Kim S.-K., Kwon E.-S., Kim T.-H., Moon J., Kim J.* Effects of atmospheric Ti (III) reduction on Nb₂O₅-doped $Li_4Ti_5O_{12}$ anode materials for lithium ion batteries. Ceramics International. 2014. V. 40. No. 6. P. 8869–8874. https://doi.org/10.1016/j.ceramint.2013.12.132
- Wang L., Zhang Y. M., Guo H.Y., Li J., Stach E.A., Tong X., Takeuchi E.S., Takeuchi K.J., Liu P., Marschilok A.C., Wong S.S. Structural and Electrochemical Characteristics of Ca-Doped "Flowerlike" Li₄Ti₅O₁₂ Motifs as High-Rate Anode Materials for Lithium-Ion Batteries // Chem Mater. 2018. V. 30. No. 3. P. 671–684.21.
- Tsai P., Hsu W-D., Lin S. Atomistic Structure and Ab Initio Electrochemical Properties of Defect Spinel for Li Ion Batteries // Journal of the Electrochemical Society. 2014. V. 161. No. 3. A439—A444. https://doi.org/10.1149/2.095403jes
- Ouyang C.Y., Zhong Z.Y., Lei M.S. Ab initio studies of structural and electronic properties of spinel // Electrochemistry Communication. 2007. V. 9. No 5. P. 1107–1112. https://doi.org/10.1016/j.elecom.2007.01.013
- Ding Z., Zhao L., Suo L., Jiao Y., Meng S., Hu Y-S., Wang Z., Chen L. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of in lithium ion batteries: a combined experimental and theoretical study // Physical Chemistry Chemical Physics. 2011. V. 13. No. 33. P. 15127–15133. https://doi.org/10.1039/C1CP21513B
- Nguyen T.D.H., Pham H.D., Lin S.-Y., Lin M.-F. Featured properties of Li⁺-based battery anode: // RSC Advances. 2020. V. 10. No. 24. P. 14071–14079. https://doi.org/10.1039/D0RA00818D
- https://next-gen.materialsproject.org/materials/ mp-772925: (Triclinic, P-1, 2) (materialsproject.org)
- Yeh J.-J., Lindau I. Atomic subshell photoionization cross sections and asymmetry parameters: 1≤Z≤103. 1985. V. 32. No. 1. P. 1–155. https://doi.org/10.1016/0092-640x(85)90016-627.
- 27. *Yeh J.-J.* Atomic Calculation of Photoionization Crosssection and Asymmetry Parameters. Gordon and Breach. New Jersey, 1993.