- Код статьи
- 10.31857/S0544126924060044-1
- DOI
- 10.31857/S0544126924060044
- Тип публикации
- Обзор
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 53 / Номер выпуска 6
- Страницы
- 496-512
- Аннотация
- Нейроморфные технологии, использующие искусственные нейроны и синапсы, могут предложить более эффективное решение для исполнения алгоритмов искусственного интеллекта, чем традиционные вычислительные системы. Недавно были разработаны искусственные нейроны, использующие мемристоры, однако они имеют ограниченную биологическую динамику и не могут взаимодействовать напрямую с искусственными синапсами в интегрированной системе. Целью работы является обзор уровней сложности и функций нейронов и синапсов, а также анализ схемотехнического воплощения отдельных типов нейронов и нейронных сетей.
- Ключевые слова
- мемристор архитектура нейронных сетей мемристивный кроссбар искусственный нейрон искусственный синапс
- Дата публикации
- 16.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 168
Библиография
- 1. Strukov D.B., Snider G.S., Stewart D.R., Williams R.S. The missing memristor found // Nature, 2008. V. 453. P. 80–83.
- 2. Roy K., Laiswal A., Panda P. Towards spike-based machine intelligence with neuromorphic computing // Nature, 2019. V. 575. P. 607—617.
- 3. Jeon W.K.G., Lee J., Lee H. et al. Deep learning with GPUs. In S. Kim, & G. C. Deka (Eds.), Hardware Accelerator Systems for Artificial Intelligence and Machine Learning (2021). (pp. 167—215). (Advances in Computers; Vol. 122). Academic Press Inc.
- 4. Capra M., Bussolino B., Marchisio A. et al. Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead // IEEE Access, 2020. V. 8. P. 225134-225180.
- 5. Sebastian A., Le Gallo M., Khaddam-Aljameh R. et al. Memory devices and applications for in-memory computing // Nat. Nanotechnol., 2020. V. 15. P. 529–544.
- 6. Xia Q.-F., Yang J.-J. Memristive crossbar arrays for brain-inspired computing // Nat. Mater., 2019. V. 18(4). P. 309–323.
- 7. Jo S.H., Chang T., Ebong I. et al. Nanoscale memristor device as synapse in neuromorphic systems // Nano Lett., 2010. V. 10. P. 1297–1301.
- 8. Yu S., Wu Y., Jeyasingh R. et al. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation // IEEE Trans. Electron Devices, 2011, V. 58. P. 2729–2737.
- 9. Ohno T., Hasegawa T., Tsuruoka T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses // Nat. Mater., 2011. V. 10. P. 591–595.
- 10. Pershin Y.V., Di Ventra M. Neuromorphic, digital, and quantum computation with memory circuit elements // Proc. IEEE, 2012. V. 100. P. 2071–2080.
- 11. Hu S.G., Liu Y., Liu Z. et al. Associative memory realized by a reconfgurable memristive Hopfeld neural network // Nat. Commun., 2015. V. 6. 7522 (2015).
- 12. Burr G.W., Shelby R.M., Sidler S. et al. Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element // 2014 IEEE International Electron Devices Meeting, pp. 29.5.1–29.5.4.
- 13. Wong H.−S.P., Lee H.−Y., Yu S. et al. Metal−oxide RRAM // Proceedings of the IEEE, 2012. V. 100. № 6. P. 1951—1970.
- 14. Yang J.J., Strukov D.B., Stewart D.R. Memristive devices for computing // Nature Nanotechnology, 2013. V. 8. № 1. P. 13—24.
- 15. van de Burgt Y., Lubberman E., Fuller E.J. et al. A non-volatile organic electrochemical device as a low-voltage artifcial synapse for neuromorphic computing // Nat. Mater., 2017. V. 16(4). P. 414–418.
- 16. Merolla P.A., Arthur J.V., Alvarez-Icaza R. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface // Science, 2014. V. 345. P. 668–673.
- 17. Sourikopoulos I., Hedayat S., Loyez C. et al. A 4-fJ/spike artifcial neuron in 65 nm CMOS technology // Front. Neurosci., 2017. V. 11. 123.
- 18. Li C., Belkin D., Li Y. et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks // Nat. Commun., 2018. V. 9. 2385.
- 19. Trepel M. Neuranatomie: Struktur und Funktion 7. Auflage, Elsevier. Munchen. 2012. 439 P.
- 20. Mead C. Neuromorphic electronic systems // Proc. IEEE, 1990. V. 78. P. 1629–1636.
- 21. Kheradpisheh S.R., Ganjtabesh M., Thorpe S.J. et al. STDP-based spiking deep convolutional neural networks for object recognition // Neural Networks, 2018. V. 99. P. 56–67.
- 22. Mozafari M., Ganjtabesh M., Nowzari-Daliniet A. al. Bio-inspired digit recognition using reward-modulated spike-timing-dependent plasticity in deep convolutional networks // Pattern Recognition, 2019. V. 94. P. 87—95.
- 23. Peng H., Gan L., Guo X. Memristor based Spiking Neural Networks: Cooperative Development of Neural Network Architecture/Algorithms and Memristors // Chip, 2024. V. 3(2). 100093.
- 24. Ianov D., Chezhegov A., Kiselev M. et al. Neuromorphic artificial intelligence systems // Frontiers in Neuroscience, 2022. DOI: 10.3389/fnins.2022.959626
- 25. Chen A., Datta S., Hu X.S. et al. A survey on architecture advances enabled by emerging beyond-CMOS technologies // IEEE Design & Test, 2019. V. 36. P. 46–68.
- 26. Dragoman M., Dragoman D. Atomic-Scale Electronics Beyond CMOS. Springer Nature Switzerland AG. 2021.
- 27. Hebb D.O. The Organization of Behavior: A Neuropsychological Theory. John Wiley & Sons, Inc. 1949.
- 28. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain // Psychol. Rev., 1958, V. 65. 386.
- 29. Ивахненко А.Г., Лапа В.Г. Кибернетические предсказывающие устройства. Киев – 1965. 219 с.
- 30. Werbos P.J. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Harvard Univ. Cambridge, Massachusetts. 1974. 453 p.
- 31. Kelley H.J. Gradient theory of optimal flight paths // ARS J., 1960. V. 30. P. 947–954.
- 32. Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors // Nature, 1986. V. 323. P. 533–536.
- 33. Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities // Proc. Natl Acad. Sci. USA, 1982. V. 79. P. 2554–2558.
- 34. Kohonen T. Self-organized formation of topologically correct feature maps // Biol. Cybern., 1982. V. 43. P. 59–69.
- 35. Manipatrun, S., Nikonov D.E., Young I.A. Beyond CMOS computing with spin and polarization // Nat. Phys., 2018. V. 14. P. 338–343.
- 36. Preskill J. Quantum computing in the NISQ era and beyond // Quantum, 2018. V. 2. P. 79.
- 37. Solli D.R., Jalali B. Analog optical computing // Nat. Photonics, 2015. V. 9. P. 704–706.
- 38. Паун Г., Розенберг Г., Саломаа А. ДНК-компьютер. Новая парадигма вычислений: пер. с англ. – М.: Мир, 2003. – 528 с.
- 39. Mead C. Neuromorphic electronic systems // Proc. IEEE. 1990. V. 78. P. 1629–1636.
- 40. Kephart J.O., Chess D.M. The vision of autonomic computing // Computer, 2003. V. 36. P. 41–50.
- 41. Kish L.B. Thermal noise driven computing // Appl. Phys. Lett., 2006. V. 89. 144104.
- 42. Unger R., Moult J. Towards computing with proteins // Proteins, 2006. V. 63. P. 53–64.
- 43. Upadhyay N.K., Jiang H., Wang Z. et al. Emerging memory devices for neuromorphic computing // Adv. Mater. Technol., 2019. V. 4. 1800589.
- 44. Bengio Y. Deep Learning of Representations for Unsupervised and Transfer Learning // JMLR: Workshop and Conference Proceedings, 2012, V. 27. P. 17—37.
- 45. Schmidhuber J. Deep learning in neural networks: An overview // Neural Netw., 2015. V. 61 P. 85–117.
- 46. Chua L.O. Local activity is the origin of complexity // Int. J. Bifurc. Chaos, 2005. V. 15. P. 3435–3456.
- 47. Csete M.E., Doyle J.C. Reverse engineering of biological complexity // Science, 2002. V. 295. P. 1664–1669.
- 48. Stanley H.E., Amaral L.A., Buldyrev S.V. et al. Self-organized complexity in economics and finance // Proc. Natl Acad. Sci. USA, 2002. V. 99. P. 2561–2565.
- 49. Arthur W.B. Foundations of complexity economics // Nat. Rev. Phys., 2021. V. 3. P. 136–145.
- 50. Wilson H.R. Voluntary generation of hyperchaotic visuo-motor patterns // Sci. Rep., 2019. V. 9. 13819.
- 51. Yao P., Wu H., Gao B., et al. Fully hardware-implemented memristor convolutional neural network // Nature, 2020. V. 577 P. 641—646.
- 52. Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve // J. Physiol., 1952. V. 117(4). P. 500–544.
- 53. Kistler W.G.W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press. 2002. 498 p.
- 54. Izhikevich E.M. Simple model of spiking neurons // IEEE Trans. Neural Netw., 2003. V. 14. P. 1569–1572.
- 55. Segee B. Methods in Neuronal Modeling: from Ions to Networks, 2nd Edition // Comput. Sci. Eng., 1999. V. 1(1). P. 81—81.
- 56. Taherkhani A., Belatreche A., Liet Y. al. A review of learning in biologically plausible spiking neural networks // Neural Netw., 2020. V. 122. P. 253–272.
- 57. Fang W., Yu Z., Chen Y. et al. Incorporating Learnable Membrane Time Constant to Enhance Learning of Spiking Neural Networks // 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada, 2021. P. 2641—2651.
- 58. Duan Q., Jing Z., Zou X. et al. Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks // Nat. Commun., 2020. V. 11. 3399.
- 59. Wang Y.-H., Gong T.-C., Ding Y.-X. et al. Redox memristors with volatile threshold switching behavior for neuromorphic computing // Journal of Electronic Science and Technology, 2022. V. 20. 100177.
- 60. Wang Z.-R., Joshi S., Savel’ev S. et al. Fully memristive neural networks for pattern classification with unsupervised learning // Nat. Electron., 2018. V. 1(2). P. 137–145.
- 61. Kim Y., Kwon Y.J., Kwon D.E., Yoon K.J. Nociceptive Memristor // Adv. Mater., 2018. V. 30, 1704320.
- 62. Davies M., Srinivasa N., Lin T.-H., et al. Loihi: a neuromorphic manycore processor with on-chip learning / IEEE Micro, 2018. V. 38. №1. P. 82—99.
- 63. Imam N., Cleland T.A. Rapid online learning and robust recall in a neuromorphic olfactory circuit // Nat. Mach. Intell., 2020. V. 2(3). P. 181–191.
- 64. Merolla P.A., Arthur J.V., Alvarez-Icaza R., et al. A million spiking-neuron integrated circuit with a scalable communication network and interface // Science, 2014. V. 345(6197). P. 668–673.
- 65. DeBole M.V., Taba B., Amir A., et al. TrueNorth: Accelerating from zero to 64 million neurons in 10 years // Computer, 2019. V. 52(5). P. 20–29.
- 66. Benjamin B.V., Gao P.-R., Mcquinn E. et al. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations // Proc. IEEE, 2014. V. 102(5). P. 699–716.
- 67. Beck M.E., Shylendra A., Sangwan V.K., et al. Spiking neurons from tunable Gaussian heterojunction transistors // Nat. Commun., 2020. V. 11(1). P. 1565, 1–8.
- 68. Covi E., Donati E., Liang X.-P., et al. Adaptive extreme edge computing for wearable devices // Front. Neurosci., 2021. V. 15. P. 611300, 1—27.
- 69. Pickett M.D., Medeiros-Ribeiro G., Williams R.S. A scalable neuristor built with Mott memristors // Nat. Mater., 2013. V. 12(2). P. 114–117.
- 70. Yi W., Tsang K.K., Lam S.K., et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons // Nat. Commun., 2018. V. 9 P. 4661, 1–10.
- 71. Gao L.-G., Chen P.-Y., Yu S.-M. NbOx based oscillation neuron for neuromorphic computing // Appl. Phys. Lett., 2017. V. 111(10). P. 103503, 1–4.
- 72. Kumar S., Williams R.S., Wang Z.-W. Third-order nanocircuit elements for neuromorphic engineering // Nature, 2020. V. 585. 7826. P. 518–523.
- 73. Zhang X.-M., Wang W., Liu Q., et al. An artificial neuron based on a threshold switching memristor // IEEE Electron. Device Lett., 2018. V. 39(2). P. 308–311.
- 74. Zhang X.-M., Lu J., Wang Z.-R., et al. Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks // Sci. Bull., 2021. V. 66(16). P. 1624–1633.
- 75. Fu T.-D., Liu X.-M., Gao H.-Y., et al. Bioinspired bio-voltage memristors // Nat. Commun., 2020. V. 11(1). P. 1861, 1—10.
- 76. Li X.-Y., Tang J.-S., Zhang Q.-T., et al. Power-efficient neural network with artificial dendrites // Nat. Nanotechnol., 2020. V. 15(9) P. 776–782.
- 77. Wu W., Wu H., Gao B. et. al. A methodology to improve linearity of analog RRAM for neuromorphic computing // 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2018. P. 103–104.
- 78. Kim T., Hu S., Kim J. et al. Spiking Neural Network (SNN) With Memristor Synapses Having Non-linear Weight Update // Front. Comput. Neurosci., 2021. V. 15. 646125.
- 79. Rao M., Tang H., Wu J. et al. Thousands of conductance levels in memristors integrated on CMOS // Nature, 2023. V. 615. P. 823—829.
- 80. Liang S., Yin S., Liu L. et al. FP-BNN: Binarized neural network on FPGA // Neurocomputing, 2018. V. 275. P. 1072—1086.
- 81. Simons T., Lee D.-J. A Review of Binarized Neural Networks // Electronics, 2019. V. 8. P. 661.
- 82. Zhang W., Yao P., Gao B. et al. Edge learning using a fully integrated neuro-inspired memristor chip // Science, 2023. V. 381. P. 1205—1211.
- 83. Balaji A., Das A., Wu Y. et al. Mapping Spiking Neural Networks to Neuromorphic Hardware // IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2020. V. 28. P. 76—86.
- 84. Yadav D.N., Thangkhiew P.L., Chakraborty S., et al. Efficient grouping approach for fault tolerant weight mapping in memristive crossbar array // Memories — Materials, Devices, Circuits and Systems, 2023. V. 4. 100045.
- 85. Zhang B., Uysal N., Fan D. et al. Handling Stuck-at-Fault Defects Using Matrix Transformation for Robust Inference of DNNs // IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020. V. 39. №10. P. 2448—2460.
- 86. Xu Y., Jin S., Wang Y., Qi Y. Aggressive Fault Tolerance for Memristor Crossbar-Based Neural Network Accelerators by Operational Unit Level Weight Mapping // IEEE Access, 2021. V. 9. P. 102828—102834.
- 87. Xia L., Huangfu W., Tang T., et al. Stuck-at Fault Tolerance in RRAM Computing Systems // IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018. V. 8 №1. P. 102—115.
- 88. Li J., Ma L., Sham C.-W., Fu C. A Novel Computing Paradigm for MobileNetV3 using Memristor // arXiv:2402.10512v1 [cs.AR]. 16 Feb 2024. 1—15.
- 89. Yan B.-N., Chen Y.-R., Li H. Challenges of memristor based neuromorphic computing system // Sci. China Inf. Sci., 2018. V. 61(6). P. 060425, 1—3.
- 90. Sung C., Hwang H., Yoo I.K. Perspective: a review on memristive hardware for neuromorphic computation // J. Appl. Phys., 2018. V. 124(15). P. 151903, 1—13.