RAS Nano & ITМикроэлектроника Russian Microelectronics

  • ISSN (Print) 0544-1269
  • ISSN (Online) 3034-5480

Structuring of the Surface of Thin Carbon Films During Activation by Microsecond Current Pulses

PII
10.31857/S0544126924010026-1
DOI
10.31857/S0544126924010026
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 53 / Issue number 1
Pages
8-15
Abstract
The influence of current activation by electric pulse breakdown on changes in surface morphology and emission characteristics of a field emission cathode made on the basis of carbon films obtained by deposition in a microwave gas discharge plasma was studied. Current activation of these films was carried out by applying voltage pulses of microsecond duration until an electrical breakdown occurred. It is shown that during activation, the morphology of the film surface in the breakdown region changes with the formation of a micro-sized emitting structure, which significantly improves the field emission characteristics of cathodes based on carbon films.
Keywords
автоэлектронная эмиссия тонкопленочные автоэмиссионные катоды углеродные пленки активация пробоем
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
92

References

  1. 1. Egorov N.V., Sheshin E.P. Carbon-Based Field Emitters: Properties and Applications // Topics in Applied Physics. 2020. V. 135. P. 449–528. https://doi.org/10.1007/978-3-030-47291-7_10.
  2. 2. Шешин Е.П. Структура поверхности и автоэмиссионные свойства углеродных материалов. М.: Изд-во МФТИ, 2001. 288 с.
  3. 3. Образцов А.Н., Павловский И.Ю., Волков А.П. Автоэлектронная эмиссия в графитоподобных пленках // ЖТФ. 2001. Т. 71. Вып. 11. С. 89–95.
  4. 4. Wächter R., Cordery A., Proffitt S., Foord J. Influence of film deposition parameters on the field emission properties of diamond-like carbon films // Diamond and Related Materials. 1998. V. 7. № 5. P. 687–691. https://doi.org/10.1016/S0925-9635 (97)00279-3.
  5. 5. Xiomara C., Huaizhi G., Bo G., Lei A., Guohua C., Otto Z. A carbon nanotube field emission cathode with high current density and long-term stability // Nanotechnology. 2009. V. 20. № 32. P. 325–707. https://doi.org/10.1088/0957-4484/20/32/325707.
  6. 6. Vink J., Gillies M., Kriege J.C. Enhanced field emission from printed carbon nanotubes by mechanical surface modification // Appl. Phys. Lett. 2003. V. 83. № 17. P. 3552–3554. https://doi.org/10.1063/1.1622789.
  7. 7. Weihua L., Xin L., Changchun Zh. Improving the emission characteristics of a carbon nanotube cathode in an aging process // Ultramicroscopy. 2007. V. 107. № 9. P. 833–837. https://doi.org/10.1016/j.ultramic.2007.02.015.
  8. 8. Guo P.S., Chen T., Chen Y.W., Zhang Z.J., Feng T., Wang L.L., Lin L.F, Sun Z., Zheng Z.H. Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters // Solid-State Electronics. 2008. V. 52. № 6. P. 877–881. https://doi.org/10.1016/j.sse.2008.01.023.
  9. 9. Bobkov A.F., Davidov E.V., Zaitsev S.V., Karpov A.V., Kozodaev M.A., Nikolaeva I.N., Popov M.O., Skorokhodov E.N., Suvorov A.L., Cheblukov Yu.N. Some aspects of the use of carbon materials in field electron emission cathodes // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2001. V. 19. № 32. P. 32–38. https://doi.org/10.1116/1.1340017.
  10. 10. Li J.J., Gu C.Z., Peng H.Y., Wu H.H., Zheng W.T., Jin Z.S. Field emission properties of diamond-like carbon films annealed at different temperatures // Applied Surface Science. 2005. V. 251. № 1–4. P. 236–241. https://doi.org/10.1016/j.apsusc.2005.03.102.
  11. 11. Gröning O., Küttel O. M., Schaller E., Gröning P., Schlapbach L. Vacuum arc discharges preceding high electron field emission from carbon films // Appl. Phys. Lett. 1996. V. 69. № 4. P. 476–478. https://doi.org/10.1063/1.118145.
  12. 12. Gröning O., Küttel O.M., Schaller E., Gröning P., Schlapbach L. Field emission from DLC films // Applied Surface Science. 1997. V. 111. P. 135–139. https://doi.org/10.1016/S0169-4332 (96)00713-1.
  13. 13. Evtukh A., Litovchenko V.G., Semenenko M., Yilmazoglu O., Mutamba K., Hartnagel H., Pavlidis D. Formation of conducting nanochannels in diamond-like carbon films // Semiconductor science and technology. 2006. V. 21. P. 1326–1330. https://doi.org/10.1088/0268-1242/21/9/018.
  14. 14. Semenenko M., Okrepka G., Yilmazoglu O., Hartnagel H., Pavlidis D. Electrical conditioning of diamond-like carbon films for the formation of coated field emission cathodes // Applied Surface Science. 2010. V. 257. № 2. P. 388–392. https://doi.org/10.1016/j.apsusc.2010.06.089.
  15. 15. Jarvisa J.D., Andrews H.L., Brau C.A., Choi B.K., Davidson J., Kang W.P., Wong Y.M. Uniformity conditioning of diamond field emitter arrays // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2009. V. 27. P. 2264. https://doi.org/10.1116/1.3212915.
  16. 16. Dennison J.R., Holtz M., Swain G. Raman Spectroscopy of Carbon Materials // Journal Articles. 1996. V. 11. № 8. P. 38–45.
  17. 17. Cançado L.G., Takai K., Enoki T., Endo M., Kim Y.A., Mizusaki H. et al. General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy // Appl. Phys. Lett. 2006. V. 88. № 16. P. 163106.
  18. 18. Эйдельман Е.Д., Архипов А.В. Полевая эмиссия из углеродных наноструктур: модели и эксперимент // Успехи физических наук. 2020. Т. 190. № 7. С. 693–714. https://doi.org/10.3367/UFNr.2019.06.038576
  19. 19. Нефедов Д.В., Яфаров Р.К. Импульсный вакуумно-плазменный пробой при сильноточной автоэмиссии планарно-торцевых наноалмазографитовых катодов // Тезисы докладов XV Всероссийской конференции молодых ученых “Наноэлектроника, нанофотоника и нелинейная физика”. СФ ИРЭ им. В.А. Котельникова. РАН. Саратов, 2020. С. 184–185.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library