RAS Nano & ITМикроэлектроника Russian Microelectronics

  • ISSN (Print) 0544-1269
  • ISSN (Online) 3034-5480

Simulation of the Adsorption and Diffusion of Lithium Atoms on Defective Graphene for a Li-Ion Battery

PII
10.31857/S0544126923700291-1
DOI
10.31857/S0544126923700291
Publication type
Status
Published
Authors
Volume/ Edition
Volume 52 / Issue number 3
Pages
207-226
Abstract
Based on the density functional theory (DFT) with allowance for spin polarization or the local spin density approximation (LSDA), we calculate the adsorption and diffusion properties of a lithium atom on a graphene ( ) monolayer with monovacancy ( ) as the anode material for an -ion battery. The DFT LSDA calculations are performed in relaxed 5 × 5 and 6 × 6 supercells and based on graphene with the monovacancy + lithium adatom complex . Based on the calculated values of the adsorption energy of the lithium atom , the energetically stable location of the lithium adatom is determined on a monolayer of supercells in and . The calculation results show that the adatom energetically prefers to be adsorbed in the pit position (H-site) rather than adsorbed from above (T-site) of the carbon atom in the monolayer. The DFT LSDA calculated electronic band structure and local total and partial magnetic moment of supercell atoms are consistent with the calculations performed by the generalized gradient approximation (GGA)-PBE functional for the H-, B-, and T-sites of graphene. Taking into account the experimentally obtained diffusion coefficients of lithium in two-layer graphene in the struc-tural packing of an AB package and the temperature (263–333 K) dependence of Li diffusion in two-layer graphene, which is described by the Arrhenius law, the diffusion activation energy of is calculated at con-centrations of = 0.06–0.51 in LixC12 graphene in the AB packaging.
Keywords
DFT LSDA графен с моновакансией адсорбция атома лития зонная структура плотность состояний магнитный момент диффузия атома лития в графене
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Yoo E., Kim J., Hosono E., Zhou H.-S., Kudo T., Honma I. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium-Ion Batteries // Nano Letters. 2008. V. 8. № 8. P. 2277–2282. https://doi.org/10.1021/nl800957b
  2. 2. Lv W., Tang D.-M., He Y.-B., You C.-H., Shi Z.-Q., Chen X.-C., Chen C.-M., Hou P.-X., Liu C., Yang Q.-H. Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage // ACS Nano. 2009. V. 3. № 11. P. 3730–3736. https://doi.org/10.1021/nn900933u
  3. 3. Jang B.Z., Liu C., Neff D., Yu Z., Wang M.C., Xiong W., Zhamu A. Graphene Surface-Enabled Lithium Ion-Exchanging Cells: Next-Generation High-Power Energy Storage Devices // Nano Letters. 2011. V. 11. № 9. P. 3785–3791. https://doi.org/10.1021/nl2018492
  4. 4. Das D., Kim S., Lee K-R., Singh A.K. Li diffusion through doped and defected graphene. Physical Chemistry Chemical Physics. 2013. V. 15. № 36. P. 15128–15134. https://doi.org/10.1039/C3CP52891J
  5. 5. Lee E., Persson K.A. Li Absorption and Intercalation in Single Layer Graphene and Few Layer Graphene by First Principles // Nano Letters. 2012. V. 12. P. 4624–4628. https://doi.org/10.1021/nl3019164
  6. 6. Kühne M., Paolucci F., Popovic J., Ostrovsky P.M., Maier J., Smet J.H. Ultrafast lithium diffusion in bilayer graphene // Nature Nanotechnology. 2017. V. 12. P. 895–902. https://doi.org/10.1038/nnano.2017.108
  7. 7. Zhong K., Hu R., Xu G., Yang Y., Zhang J.-M., Huang Z. Adsorption and ultrafast diffusion of lithium in bilayer graphene: Ab initio and kinetic Monte Carlo simulation study // Physical Review B. 2019. V. 99. № 15. P. 155403–12. https://doi.org/10.1103/PhysRevB.99.155403
  8. 8. Асадов M.M., Мустафаева С.Н., Гусейнова С.C., Лукичев В.Ф., Тагиев Д.Б. Ab initio моделирование влияния расположения и свойств упорядоченных вакансий на магнитное состояние монослоя графена // Физика твердого тела. 2021. Т. 63. № 5. С. 680–689. https://doi.org/10.1134/S1063783421050036
  9. 9. Асадов М.М., Мустафаева С.Н., Гусейнова С.С., Лукичев В.Ф. DFT моделирование электронной структуры и адсорбция германия в упорядоченном графене с вакансией // Микроэлектроника. 2022. Т. 51. № 2. С. 125–139. https://doi.org/10.1134/S1063739722010024
  10. 10. Асадов M.M., Маммадова С.О., Гусейнова С.C., Мустафаева С.Н., Лукичев В.Ф. Моделирование адсорбции золота на поверхность дефектного графена // Микроэлектроника. 2022. Т. 51. № 6. С. 429–442. https://doi.org/10.31857/S054412692270003X
  11. 11. Perdew J.P., Zunger A. Self-interaction correction to density-functional approximations for many-electron systems // Physical Review B. 1981. V. 23. № 10. P. 5048–5079. https://doi.org/10.1103/physrevb.23.5048
  12. 12. Konschuh S., Gmitra M., Fabian J. Tight-binding theory of the spin-orbit coupling in graphene // Physical Review B. 2010. V. 82. № 24. P. 245412–11. https://doi.org/10.1103/PhysRevB.82.245412
  13. 13. Monkhorst H.J., Pack J.D. Special points for Brillouin zone integrations // Physical Review B. 1976. V. 13. № 12. P. 5188–5192. https://doi.org/10.1103/physrevb.13.5188
  14. 14. Chan K.T., Neaton J.B., Cohen M.L. First-principles study of metal adatom adsorption on graphene // Physical Review B. 2008. V. 77. № 23. P. 235430–12. https://doi.org/10.1103/physrevb.77.235430
  15. 15. Elias D.C., Gorbachev R.V., Mayorov A.S., Morozov S.V., Zhukov A.A., Blake P., Ponomarenko L.A., Grigorieva I.V., Novoselov K.S., Guinea F., Geim A.K. Dirac cones reshaped by interaction effects in suspended graphene // Nature Physics. 2011. V. 7. № 9. P. 701–704. https://doi.org/10.1038/nphys2049
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library